# DIYALA JOURNAL FOR PURE SCIENCES

Free radical polymerization of some new vinylic compounds bearing both ester and amide groups By Dr. Nabeel Jamal Ayed A-Asli

## Free radical polymerization of some new vinylic compounds bearing both

## ester and amide groups

## By Dr. Nabeel Jamal Ayed A-Asli

University of Tikrit / college of education /Department of Chemistry

**Receiving Date:** 2010/11/10 - Accept Date: 2011/3/30

# Summary

Many vinylic monomers bearing both ester and amide groups were synthesized, starting from amic acids. The resulted monomers were polymerized by free radical method. Full analysis of the prepared compounds were carried out using spectroscopic methods in addition to the physical properties of those compounds.

تم تحضير العديد من المونيمرات الفاينيلية الحاملة لكلا مجاميع الاستر و الامايد ابتداا من احماض الاميك . بلمرة المونيمرات الناتجة بطريقة الجذور الحرة . ثم اجري تحليل شامل للمركبات المحضرة اعتمادا على الطرق الطيفية بالاضافة الى ايجاد الخواص الفيزياوية لها .

الخلاصة





## **Introduction**

Polyamide plastics have good mechanical, thermal and electrical properties, and can be easily processed<sup>(1)</sup>. Typical engineering plastics include poly amides and poly esters. Compared to poly ester of a similar structure, poly amides have a high glass transition and melting temperature and crystallize more rapidly<sup>(2,3)</sup>. The disadvantage of poly amides is that they have a high water absorption<sup>(4)</sup>. Thus it would be of interest to combine the good properties of both the poly esters and poly amides in to copolyesteramides, which gives them the properties intermediate<sup>(5,6)</sup>. Their rigidity caused by the double bond character of the amide group coupled with extensive hydrogen bonding influences ordering of poly ester amides<sup>(7-9)</sup>.

## **Experimental part**

#### **A- Instruments**

- melting points were determined on capillary melting point apparatus, Thomas Hoover model 6427-Fio.
- 2- softening points were determined on thermal microscope (Kofler-method) Reichert thermovar.
- 3- infrared spectra were record using solid KBr disk on perkin-Elemer 137A spectrophotometer.
- 4- Elemental analysis were performed by the college of science , university of Mosul (1998-1999) .

#### **B-** Chemicals or materials

- 1- All chemical were purchased from fluka , BDH and Aldrich .
- 2- Benzene, sodium wire was added to benzene and left for over night, the mixture was then distilled over sodium.
- 3- Azobisisobutyronitrile (AIBN) : crystallization from methanol dried under vaccum at room temperature and stored in dark bottel.

#### Synthesis of maleamic acid (I)

Literature procedures were followed in the preparation with miner modification <sup>(5-8)</sup>.



To a slurry of 0.98 (0.01mole) of maleic anhydride in 50ml benzene, a solution of 0.93g(0.01 mole) aniline was added drop wise from droping funnel and stirring for one hr . The N-phenylmaleamic acid was precipitate, and purified by dissolving in sodium bicarbonate solution and re precipitation with dil.HCl.

All other re preparations maleamic acids are prepared in the same method , the IR and melting point are in agreement with litreture <sup>(5-8)</sup>

### Synthesis of 3-undecane-4-benzylchloride<sup>(9)</sup> (II)

Literature procedure were followed in the preparation with minor modification in two steps : Step one: synthesis of paraformaldehyde by evaporation of an aqueous solution of (37%) formalin , an amorphous white is produced .

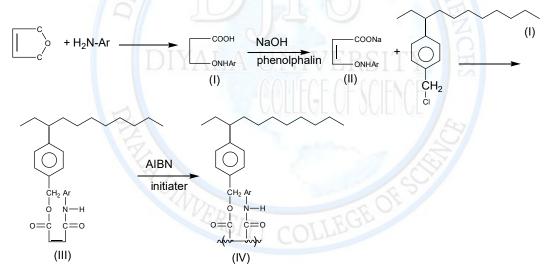
Step two : into a 250ml three necked flask, equipped with reflux , a mechanical stirrer and agas lead-in tube extending to near the bottom flask , place (23.3g , 0.1mole of 3-undecanbenzene , (3g,0.1mole) paraformaldehyde and 3g of finely anhydrous zinc chloride.

Support the flask on water bath. Heat the bath to 60C and pass in a rapid steam of hydrogen chloride until no more gas is absorbed cab out 20 minutes) ; continuous to stirring at 80C about three hours , allow to cool to room temperature , the white oily precipitate wash the product with 50 ml of cold water several time , decantation of water, and left in oven (40C) for seven hours . The white oil were put in refrigerator five hours . The sample allowed to heat by hand until the white precipitate is formed . 60% yield were obtained ,(m.p 13.0C)

### Synthesis of 3-undecane-4-benzyl-N-aryl maleamate general procedure (III)

Dissolve or suspend 0.5g of the amic acid in 5ml of water added a drop or two of phenolphthalein indicator , and then 5% sodium hydroxide unit the acid is just neutralized. Add few drop of hydrochloric acid so that the final solution is faintly acid(litmus) . introduce 0.5 of 3- undecaue-4-benzylchloride dissolved in 5ml of rectified or methylated spirit and heat the mixture under reflux for 1 hr. Allow the solution to cool , filter the separated precepitate . Recrystallise by dissolve the solid in hot alcohol , added light naphtha until the white precipitate is formed .

#### Homopolymerization of 3-undeane-4-benzyl –N-aryl maleamate(IV)


In the polymerization bottle , the nine grams of titled monomer was dissolved in 20ml of freshly distilled THF solvent. To this solution added 0.02g of AIBN initiator . Purged with



dry nitrogen before heating at 66-70 C. on a water bath for three hours . The resulting clear solution was added to a 250ml of methanol . The white precipitation was formed and purified by dissolving in acetone and re precipitation with petroleum ether , according to G.Odian method<sup>(10)</sup>.

## **Results and Discussion**

It is well known a substituted primary amine is reacted easily with cyclic anhydride to produce amic acid(I). The poly vinylic amic acid, is not seen in the literature. Any amic acid compound have both a carboxylic acid and amide fuctional group. When allowed carboxylic group (in amic acids) to reacted with 3-undecan benzyl chloride in aqeuous base, the ester group was formed beside the amide. The synthesis of these compounds is presented in scheme (1).



Scheme(1) : Acts Steps of synthesis vinylic compound containing bothester-amide group(III) and their polymerization (IV)

The IR spectra of these compounds (III) showed the characteristic absorption of ester group at (1748-1763)cm<sup>-1</sup>, amide group (1684-1693) cm<sup>-1</sup>, (C-H) olefinic group at (3024-3035)cm<sup>-1</sup>, and (C=C) at (1605) cm<sup>-1</sup>. The increasing absorption of carboxylic group, in the compound (III) and de solved in sodium bicarbonates solution indicated esterification is formed and



beside these facts the elemental analysis was fitted with structural formulae (III) (see table3). Homopolymerization of the above (III) have been synthesized through free radical method in the presence of AIBN initiator and benzene as solvent, the polymer (IV) have higher melting point than the corresponding monomers (III) and the absence of double bond in IR spectrum and the remain red color when addition bromine solution or violet color when addition Kmno<sub>4</sub> solution to these compound (IV).

| Code# | Ar          | % yield     | color       | M.p.C |
|-------|-------------|-------------|-------------|-------|
| 1     | $-\bigcirc$ | 83          | White       | 113   |
| 2     | F           | 79          | White       | 127   |
| 3     | <b>D</b>    | 80<br>UNIVI | White       | 130   |
| 4     | F           | 76          | white       | 137   |
| 5     | CI          | 75          | White       | 143   |
| 6     | -Ci Si      | 79<br>COLL  | White       | 197   |
| 7     |             | 81          | White       | 152   |
| 8     | Br          | 77          | Pale yellow | 162   |
| 9     | Br          | 76          | Pale yellow | 164   |

Table (1): % yield ,color,melting point (C) of new vinylic-esters-amides compounds (III)



| 10 | Br | 74 | Pale yellow | 171 |
|----|----|----|-------------|-----|
| 11 |    | 78 | White       | 175 |
| 12 |    | 76 | White       | 178 |
| 13 |    | 75 | white       | 183 |

Table(2) : IR absorptions and elemental analysis -ester-amides compounds(III)

| Code# | υNH  | IR (KBr)cm-1          |                         | υC=O<br>ester | υ <b>C-O</b> | M.wt                                                  | Elemental analysis calcd<br>(found) |              |                        |  |
|-------|------|-----------------------|-------------------------|---------------|--------------|-------------------------------------------------------|-------------------------------------|--------------|------------------------|--|
|       |      | Aromatic<br>Aliphatic | Olefenic<br>CH3,CH2,CH  | υC=O<br>amide | 00-0         | Formula                                               | %C                                  | %Н           | % N                    |  |
| 1     | 3450 | 3015                  | 3032<br>2985,2953,2890  | 1764<br>1693  | 1191         | C <sub>28</sub> H <sub>36</sub> O <sub>3</sub> N=434  | 77.42<br>77.39                      | 8.29<br>8.21 | 3.23<br>3.19           |  |
| 2     | 3447 | 3017                  | 3025<br>2980,2950 ,2896 | 1759<br>1684  | 1188         | C <sub>28</sub> H <sub>35</sub> O <sub>3</sub> NF     | 40                                  |              |                        |  |
| 3     | 3448 | 3021                  | 3034<br>2990,2954,2899  | 1754<br>1687  | 1175         |                                                       | ¥.                                  |              |                        |  |
| 4     | 3449 | 3018                  | 3028<br>2995,2953, 2900 | 1754<br>1690  | 1173         | C <sub>28</sub> H <sub>35</sub> O <sub>3</sub> NF=452 | 74.34<br>74.31                      | 7.74<br>7.72 | 3.09<br>7<br>3.08<br>5 |  |
| 5     | 3448 | 3020                  | 3033<br>2995,2950,2898  | 1750<br>1688  | 1190         |                                                       |                                     |              |                        |  |
| 6     | 3451 | 3025                  | 3035<br>2993,2948, 2891 | 1748<br>1685  | 1177         |                                                       |                                     |              |                        |  |
| 7     | 3454 | 3017                  | 3028<br>2990,2950,2890  | 1750<br>1690  | 1180         | C <sub>28</sub> H <sub>35</sub> O <sub>3</sub> NCl    | 71.72<br>71.70                      | 7.47<br>7.41 | 2.99<br>2.93           |  |
| 8     | 3450 | 3015                  | 3024<br>2994,2948 ,2880 | 1752<br>1693  | 1187         |                                                       |                                     |              |                        |  |
| 9     | 3455 | 3017                  | 3025<br>2993,2953 ,2890 | 1754<br>1687  | 1184         |                                                       |                                     |              |                        |  |
| 10    | 3447 | 3018                  | 3027<br>2995,2952,2890  | 1750<br>1680  | 1170         |                                                       |                                     |              |                        |  |



| 11 | 3444 | 3016 | 3028            | 1750 | 1175 |  |  |
|----|------|------|-----------------|------|------|--|--|
|    |      |      | 2992,2950,2889  | 1684 |      |  |  |
| 12 | 4447 | 3018 | 3027            | 1754 | 1184 |  |  |
|    |      |      | 2990,2948 ,2895 | 1690 |      |  |  |
| 13 | 4448 | 3017 | 3026            | 1750 | 1177 |  |  |
|    |      |      | 2995,2951,2888  | 1688 |      |  |  |

\* the numbering as in table (1)

#### Table (3) : IR absorptions, solfening points, % conversions and intrinsic viscosity of the new

| Code# | Ar  | vN-H | IR (KBr)cm-1<br>vC-H aromatic<br>vC-H aliphatic<br>CH3,CH2,CH | vC=O<br>ester<br>vC=O<br>amide | υC-O | S.p.    | %Conversion | ηint. |
|-------|-----|------|---------------------------------------------------------------|--------------------------------|------|---------|-------------|-------|
| 14    | -   | 3500 | 3018<br>2987,2951,2889                                        | 1757<br>1698                   | 1195 | 203-204 | 67          | 0.45  |
| 15    | F   | 3480 | 3015<br>2982,2952,2900                                        | 1760<br>1686                   | 1190 | 211-213 | 65          | 0.51  |
| 16    | F   | 3450 | 3018<br>2993,2957,2900                                        | 1756<br>1690                   | 1180 | 219-222 | 66          | 0.55  |
| 17    | F   | 3448 | 3019<br>2995,2955,2899                                        | 1756<br>1687                   | 1185 | 226-228 | 64          | 0.59  |
| 18    |     | 3485 | 301<br>2990,2950,2900                                         | 1755<br>1686                   | 1177 | 241-244 | 67          | 0.63  |
| 19    | - C | 3493 | 3018<br>2993,2952,2893                                        | 1756<br>1687                   | 1178 | 250-251 | 70          | 0.68  |
| 20    |     | 3492 | 3017<br>2996,2961,2901                                        | 1759<br>1690                   | 1187 | 261-263 | 69          | 0.69  |
| 21    | Br  | 3495 | 3018<br>2991,2952,2889                                        | 1754<br>1690                   | 1185 | 270-272 | 73          | 0.71  |

poly( vinylic -ester-amides )

Vol: 8 No: 1, January 2012

# DIYALA JOURNAL FOR PURE SCIENCES



#### Free radical polymerization of some new vinylic compounds bearing both ester and amide groups By Dr. Nabeel Jamal Ayed A-Asli

| 22 | Br                    | 3496 | 3018           | 1753 | 1187 | 274-278 | 71 | 0.78 |
|----|-----------------------|------|----------------|------|------|---------|----|------|
|    | $\neg$                |      | 2993,2951,2889 | 1691 |      |         |    |      |
| 23 | $\square$             | 3495 | 3018           | 1754 | 1186 | 279-281 | 73 | 0.76 |
|    | Br                    |      | 2992,2951,2889 | 1691 |      |         |    |      |
| 24 | I \                   | 3500 | 3017           | 1752 | 1186 | 284-286 | 71 | 0.77 |
|    | $\overline{\bigcirc}$ |      | 2995,2950,2901 | 1690 |      |         |    |      |
| 25 |                       | 3498 | 3017           | 1753 | 1185 | 288-291 | 70 | 0.78 |
|    | $\neg$                |      | 2996,2951,2900 | 1690 | FO   |         |    |      |
| 26 | $\square$             | 3500 | 3018           | 1754 | 1188 | 295-298 | 69 | 0.79 |
|    |                       | 5    | 2996,2951,2900 | 1685 |      | COp.    |    |      |

## References

- 1. M.Tomikawa, S.Yoshida and N.Okamoto, J of polymer, 41,604-608(2009).
- 2. K.Han Yu, Y.Hyuu Yoo, J.M Rhee, M.Yong, H.Lee and S.C.Yu, mot.Res.Innovat, 7,51-56 (2003).
- 3. B.Guyot, B.Bosquette, M.pine and J.Graille, Biotechnology letters, 19, number (1997).
- S.M.Choi , T.Ahn , J.S.Kim and M.Yi , polymer for advanced technologies , 21(6), 418-423 (2009).
- 5. T.M.Pyriadi and K.Said Hadi , J.Arab Gulf Sci.Research , A.5(3),341-348 (1987) .
- 6. T.M.Pyriadi and N.Q.Samoka, J.Macromol.chem.A-24(7),829-834 (1987).
- 7. T.M.Pyriadi and A.S.Hamad, Iraqi, J.Sci, Vol 36, 1,109-120 (1995).
- 8. F.H.Jebrael, M.Z.Elsabbe and A.A.Mohamed, J.Macromole, 19, 32-37 (1986).
- 9. A.I.Vogel, A text-book of practical organic chemistry, Third .Ed., Longman (1973).
- 10. G.Odian " Principle of polymerization ", MC .Graw-Hill ,New York (1970) .