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  الملخص

نقترح ان نموذج ماركوف المخفي التفاعلي بحا"ت ا"نتقال المخفية تعتمد على ح�ت المشاھدات الحالية، والنموذج   

)IHHM (ھي من النوع العام لـ)HMM( ون�حظ ان النوع العام من النموذج ،)HMM ( يختلف عن النوع التقليدية

)HMMs(ًوسوف نعطي مثا" للبرھان .   عليھا من قبل الحا"ت المخفية السابقة فقط، حيث الحا"ت المخفية المستقبلية يسيطر

  ).IHMM( ، وسنتسع في النتائج للوصول الى النوع العام من )IHMM(على النوع 

 
Abstract 

 I proposed an Interactive Hidden Markov Model (IHMM) where the transitions of hidden 

states depend on the current observable states. The IHHM is a generalization of the HMM. I note 

that this kind of HMM is different from classical HMMs where the next hidden states are 

governed by the previous hidden states only. An example is given to demonstrate IHMM. I'll 

extend the results to give a general IHMM. 
 

Introduction 

 Hidden Markov Models (HMMs) are widely used in bioinformatics [1], speech 

recognition [2] and many other areas [3]. In a HMM, there are two types of states: the observable 

states and the hidden states. In a HMM, there is no one-to-one correspondence between the 

hidden states and the observed symbols. It is therefore no longer possible to tell what hidden 

state the model is in which the observation symbol is generated just by looking at the observation 

symbol. 
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Hidden Markov Models 

 A standard HMM is usually characterized by the following elements [2]: 

(i) N, the number of states in the model. Although the states are hidden, for many practical 

applications, very often, there is physical significance to the states. We denote the individual 

states as 

 S = {S1, S2, . . . , SN},  and the state at the length t as qt. 

(ii) M, the number of distinct observation symbols (or state) for the hidden states. The 

observation symbols correspond to the physical output of the system being modeled. We 

denote the individual symbols as  

V = {v1, v2, · · · , vM} 

(iii) The state transition probability distribution       A = {aij} 

Where: 

 
(iv) The observation probability distribution in state j, B = {bj(k)}, where 

 

v) The initial state distribution Π = {πi} where 

 

 

 Given appropriate values of N,M, A,B and Π, the HMM can be used as a generator to give 

an observation sequence       O = O1O2 . . . OT 

 where each observation OT is one of the symbols from V, and T is the number 

of observations in the sequence. For simplicity, we use the compact notation 

Λ = (A,B,Π),   O = {O1O2O3 · · ·OT } 

 To indicate the complete parameter set of the HMM. According to the above 

specification, very often a first order Markov process is used in modeling the transitions among 

the hidden states in a HMM. 
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Higher-order HMMs 

 There are three key issues in HHMMs: 

Problem 1: Given the observation sequence O = {O1O2 · · ·OT } and a HMM, how to efficiently 

compute the probability of the observation sequence ? 

• Problem 2: Given the observation sequence O = {O1O2 · · ·OT } and a HMM, how to choose a 

corresponding state sequence Q = {Q1Q2 · · ·QT } which is optimal in certain 

sense? 

• Problem 3: Given the observation sequence O = {O1O2 · · ·OT }, how to choose the model 

parameters in a HMM? 

For Problem 1, a forward-backward dynamic programming procedure [4] is formulated to 

calculate the probability of the observation sequence efficiently. 

For Problem 2, it is the one in which we attempt to uncover the hidden part of the model, i.e., to 

find the “correct” state sequence. In many practical situations, we use 

optimality criteria to solve the problem as good as possible. 

 The most widely used criterion is to find a single best state sequence, i.e., maximize the 

likelihood P(Q|Λ,O). This is equivalent to maximizing P(Q,O|Λ) since 

 

 Viterbi algorithm [5] is a dynamic programming technique for finding this single best 

state sequence 

Q = {Q1,Q2, · · ·,QT } 

for the given observation sequence  

O = {O1,O2, · · ·,OT }. 

 

For Problem 3, we attempt to adjust the model parameters Λ such that P(O|Λ) is maximized by 

using Expectation-Maximization (EM) algorithm. 

 For a complete tutorial on hidden Markov model, we refer readers to the paper by 

Rabiner [2] and the book by MacDonald and Zucchini [3]. 
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The DNA Sequence 

 In the DNA sequence analysis, higher-order Markov models have been used to model the 

transitions among the observable states, see [6, 7]. An mth order Markov process is a stochastic 

process where each event depends on the previous m events. It is believed that higher-order 

Markov model (in the hidden layer) can better capture a number of data sequences such as the 

DNA sequences. The main aim of this paper is to develop higher-order HMMs (higher-order 

Markov model for the hidden states). The main difference between the traditional HMM and a 

higher-order HMM is that in the hidden layer, the state transition probability is governed by the 

mth order higher-order Markov model 

 

 We assume that the distribution Π of initial m states is given by 

 

 In order to determine whether certain short DNA sequence (a categorical data sequence 

of four possible categories: A,C,G and T) occurred more often than would be expected by 

chance, Avery [8] examined the Markovian structure of introns from several other genes in mice. 

Here we apply our model to the introns from the mouse αA-crystallin gene see for instance. We 

compare our second-order model with the Raftery’s second-order model. The model parameters 

of the Raftery’s model are given in [9]. 

 

The results are reported in Table 1.  

Table 1. Prediction accuracy in the DNA sequence. 
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 The comparison is made with different grouping of states as suggested in [175]. In 

grouping states 1 and 3, and states 2 and 4 we have a 2-state model. 

Our model gives 

 

 

 

 In grouping states 1 and 3 we have a 3-state model. Our model gives 

 

 

 

 

 

 

 

 



 

 228 

  Vol:6  No:2, April 2010 

Ibrahim Z. Chaloob," The Interactive Hidden Markov Model with real Practical applied " 
 

 If there is no grouping, we have a 4-state model. Our  model  gives  

 

 

 

 

 

 When using the expected errors (assuming that the next state is randomly chosen with 

equal probability for all states) as a reference, the percentage gain in effectiveness of using 

higher-order Markov chain models is in the 3-state model. In this case, our model also gives a 

better estimation when compared with Raftery’s model. Raftery [10]. 

 I consider use the BIC to weight efficiency gain in terms of extra parameters used. This is 

important in his approach since his method requires solving a highly non-linear optimization 

problem. 

 The complexity of solving the optimization problem increases when there are many 

parameters to be estimated.  

 

The Interactive Hidden Markov Model 

 The IHHM is a generalization of the HMM .We note that this kind of HMM is different 

from classical HMMs where the next hidden states are governed by the previous hidden states 

only. An example is given to demonstrate IHMM. We then extend the results to give a general 

IHMM. 
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Example (case study) 

 Suppose that we are given a categorical data sequence (in steady state) of volume of 

transactions as follows: 

1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 1, 3, 3, 4, 1. 

 Here 1=high transaction volume, 2= medium transaction volume, 3=low transaction 

volume and 4=very low transaction volume.  

Suppose there are two hidden states: A (bull market period) and B (bear market period).  

In period A, the probability distribution of the transaction volume is assumed to follow 

(1/4, 1/4, 1/4, 1/4). 

In period B, the probability distribution of the transaction volume is assumed to follow 

(1/6, 1/6, 1/3, 1/3). 

 In the proposed model, we assume that hidden states are unobservable but the transaction 

volumes are observable. We would like to uncover the hidden state by modeling the dynamics by 

a Markov chain. 

             In the Markov chain, the states are       A,B, 1, 2, 3, 4. 

We assume that when the observable state is i then the probabilities that the hidden state is A and 

B are given by αi and (1 – αi), (depending on i) respectively in next time step. The transition 

probability matrix governing the Markov chain is given by: 

 

 
 

Estimation of Parameters 

 In order to define the IHMM, one has to estimate the model parameters α1, α2, α3 and α4 

from an observed data sequence. One may consider the following two-step transition probability 

matrix as follows: 
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 One can extract the one-step transition probability matrix of the observable states from 

  as follows: 

 

 

 However, in this case, we do not have a closed form solution for the stationary 

distribution of the process. To estimate the parameter αi, we first estimate the one-step transition 

probability matrix from the observed sequence.  

This can be done by counting the transition of the states in the observed sequence and we have 

frequencies: 

 

We expect that 
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And hence αi can be obtained by solving the following minimization problem: 

    …………..(1) 

 

Subject to      

 

Here ||.||F is the Frobenius norm, i.e. 

 

 This is equivalent to solve the following four independent minimization problems (i) - 

(iv) and they can be solved in parallel. This is an advantage of the estimation method. 

 We remark that one can also consider other matrix norms for the objective function (1), 

let us say ||.||M1 or ||.||M∞ and they may result in linear programming problems. 

 

 

 

 Solving the above optimization problems, we have 

 

  Hence we have 
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And 

 

 

Extension to the General Case 

 

 The method can be extended to a general case of m hidden states and n observable states. 

I note the one-step transition probability matrix of the observable states is given by 

 

 

 

 

 

 i.e 

 

 

 

 Here we assume that αij are unknowns and the probabilities pij are given. 

Suppose [Q]ij is the one-step transition probability matrix estimated from the observed sequence. 

Then for each fixed i, αij, j = 1, 2, . . . , m can be obtained by solving the following constrained 

least squares problem: 
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Subject to                           

 

 

 

And 

 

 The idea of the IHMM presented in this paper is further extended to address the 

following applications and problems in Ching et al. [11]. 

(i) IHMM is applied to some practical data sequences in sales demand data sequences. 

(ii) there are only a few works on modeling the non-linear behavior of categorical time series can 

be found in literature. In the continuous-state case, the threshold auto- regressive model is a 

well-known approach.  

 The idea is to provide a piecewise linear approximation to a non-linear autoregressive 

time series model by dividing the state space into several regimes via threshold principle. 

 The IHMM provides a first-order approximation of the non-linear behavior of categorical 

time series by dividing the state space of the Markov chain process into several regimes. 
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