On Singular Sets and Maximal topologies

رفعت زيدان خلف جامعة ديالي/ كلية العلوم جميل محمود جميل جامعة ديالي / كلية العلوم

Abstract:

In this Work , we study The concept of maximal topologies and its relation with Singular sets , furthermore we study the spaces which are maximal with respect to semi-regular property and we proved that if τ is sub maximal has property P then τ is maximal P if and only if τ is non singular (with respect to P) we prove that if P is contractive, semi-regular and τ is non Singular (with respect to P) then every τ_s - Singular set V U{x} such that $x \in Cl_{\mathbf{T}^*}V_{\mathbf{i}} - Int_{\mathbf{T}^*}V_{\mathbf{i}}$ is τ_s -open and we provide some theorems.

الملخص:

درسنا في هذا البحث التوبولوجيات الاعظمية وعلاقتها بالمجموعات المنفردة بالإضافة إلى ذلك درسنا الفضاءات الاعظمية المعتمدة على خاصية شبه منتظم وبرهنا أذا كان τ اعظمي جزئي يمتلك الخاصية P فأن τ اعظمي P اذا وفقط اذا τ ليس منفردا (بالاعتماد على الخاصية P وبرهنا أذا كان P شبه منتظم، τ ليس منفردا (بالاعتماد على الخاصية Φ) فان كل مجموعة منفردة - Φ وبرهنا أذا كان Φ ، بحيث Φ وبرهنا بعض المبرهنات الأخرى.

1- Introduction:

The family of all topologies definable on an infinite set X is ordered by inclusion which is denoted by LT (X). A member τ of LT (X) is said to be Maximal with respect to p if τ has property p but no stronger member of LT (X) has property p. Recall that a τ -open set V is τ -regular open if $V=\inf_{\tau} \operatorname{cl}_{\tau} V$. The topology generated by the family τ -regular open sets is called semi-regularization of τ and denoted by τ_s . A topological property p is called semi-regular when $\tau \in \operatorname{LT}(X)$ is P if and only if $\tau_s \in \operatorname{LT}(X)$ is P. Hausdorff and connectedness are the classic examples of semi-regular properties given $\tau \in \operatorname{LT}(X)$ and a subset V of X the boundary of V, $\operatorname{cl}_{\tau} V = \operatorname{int}_{\tau} V$ is denoted by $\Psi_{\tau}V$, if D is a family of subsets of X, the topology generated $T \cup D$ is denoted by $\langle T \cup D \rangle$, when $D=\{A\}$ for some $A \subseteq X$ we write $\langle T \cup D \rangle$ as T(A).

The concept of maximal topologies was first introduced in 1943 by E. Hewitt when he showed that compact Hausdorff spaces are maximal compact In 1948 A.Ramanathan proved that a topological subsets are precisely the closed sets, In 1977 Guthrie and Stone introduced the concept of singular set to construct a maximal connected expansion of the real line. In 1986 Neumann-Lara and Wilson generalized the notion of a singular set to characterize T1 maximal connected spaces.

2 Preliminaries

Definition 2.1[4]

Let (X, τ) b a o olo ical s ac \subseteq aXidh& intersection of all closed super sets of A is called the closure of A which is denoted by Cl (A).

Definition 2.2[4]

Let (X, τ) b a o olo ical s ac $\subseteq aXd$ A point $x \in X$ is said to be an interior point of A if and only if A is a neighborhood of x.

The set all interior points of A is called the interior of A which is denoted by Int(A).

Definition 2.3[4]

Let τ_1 and τ_2 b wo o olo is fo as X_1 viswes alger a τ and τ_2 is stron open set.

Definition 2.4[4]

Let (X, τ) b a o olo ical s ac \subseteq aXd Are say that A is regular open set if and only if A = Int(Cl(A)).

Definition 2.5[4]

A o olo ical s ac (X dt)oi**bea**siemi- regular space if and only if every open set is union for regular open sets.

Definition 2.6[4]

A o olo ical s ac (X au) is said ob la if and only if fo every closed F and every $P \notin F$ there are disjoint open sets G and H in X such that $F \subset G$, $P \in H$.

Definition 2.7[4]

A o olo ical s ac (X au) is said o b disconn c d if and only if there are disjoint open sets G and H in X such that $X = G \cup H$, when no such disconnection exists, X is connected.

Definition 2.8[4]

Let (X, τ) b a o olol speace and $A \subseteq X$, we say that A is a singular set if either A is regular open or there exists $x \in A$ such that $A = \{x\}$ is regular open.

3 Singular sets and maximal topologies

Definition 3.1:[3]

Given $\tau \in LT(X)$, τ is sub maximal if every τ -dense set is τ -open.

Theorem 3.1[4]:

Given $T \in LT(x)$, the following statements are equivalent.

- 1) τ is sub maximal
- 2) The family of τ dense open sets is an ultra filter of τ s- dense sets.
- 3) For any $\alpha \in LT(X)$ such that $\tau \subset \alpha$, $\alpha_s \neq \tau_s$.
- 4) Every subset of X is the union of an open set and a closed set.
- 5) For every subset A of X which is not open, there are non empty proper closed sets B_1 , B_2 such that $B_1 \subseteq A \subseteq B_2$
- 6) Every subset of X is the intersection of an open and a closed set.
- 7) Every subset A of X, for which int $A=\phi$ is closed.
- 8) Every subset A of X, for which int $A=\phi$ is discrete
- 9) cl (A)-A is closed, for every subset A of X
- 10) cl (A)- A is discrete, for every subset A of X

Proof:[4]

Lemma 3.1:

If $\tau \in LT(X)$ is sub maximal and $B \subseteq X$ then $(int_{\tau} cl_{\tau} B) \cup \{x\}$ is τ (B)-open, for all $x \in B$ -int_{τ}B.

Proof:

since (X-B) $U(int_{\tau}B)$ $U\{x\}$ is τ -dense, so by hypothesis is τ -Open. Now

 $(int_{\tau}B)\ \bigcup\{x\}=B\cap\ [(X-B)\ \bigcup\ (int_{\tau}B)\ \bigcup\{x\}]\ and\ so\ is\ \tau(B)\ -open\ thus$ $(int_{\tau}cl_{\tau}int_{\tau}B)\ \bigcup\{x\}\ is\ \tau(B)\ -open$

Definition 3.2[4]

Give $\tau \in LT(X)$ has property P, V is t- regular open and $x \in X$, then $VU\{x\}$ is said to be a τ - singular (with respect to P) set at x, if τ ($VU\{x\}$) has property P.

Example 3.1:

consider the real line with usual topology let V be the following union of open intervals $(-1,0) \cup \{ \bigcup_{n=1}^{\infty} \left(\frac{1}{2n+1}, \frac{1}{2n} \right) \}$ then $V \cup \{0\}$ is a singular (with respect to connectedness) set at 0, but is not an open set.

Definition 3.3[4]

Give $\tau \in LT(X)$, t is called non-singular (with respect to p) if τ has property P and every singular (with respect to P)set is τ - open. Theorem 3.2:

let $\tau \in LT(X)$ is sub maximal and P, if τ is maximal P then τ is non singular (with respect to P).

Proof:

suppose τ is P but not maximal P. then there is a set B \subset X such that $\tau\subset\tau$ (B). so there is a point $x\in B$ - $\operatorname{int}_{\tau}B$. Now $V=\operatorname{int}_{\tau}\operatorname{cl}_{\tau}B$ is τ -regular open, since τ is sub maximal and $\operatorname{int}_{\tau}BU\{x\}=(VU\{x\}\cap[\operatorname{int}_{\tau}BU\ (X-\operatorname{cl}_{\tau}B)\ U\{x\}]$ then V is not τ -open. But by lemma 1, $VU\{x\}$ is $\tau(B)$ -open and so any weaker than $\tau(B)$ has property P, $\tau(VU\{x\})$ is P that is $VU\{x\}$ is a τ -singular (with respect to P) set which is not τ -open. Lemma 2.3:

Suppose $\tau \in LT(X)$ is P, $A \subseteq X$ and β_x is a filter base of τ -singular (with respect to p) sets at x, when $x \in X$. let $\tau^* = \langle \tau \cup \beta_x \rangle$ then the τ^* -closure of A is described by

$$\bar{A}^* = \begin{cases} \bar{A} & \text{if } x \in \overline{(B - \{x\})} \cap A \text{ for every } B \in \beta_x \\ \bar{A} - \{x\} & \text{if } x \notin \overline{(B - \{x\})} \cap A \text{ for every } B \in \beta_x \end{cases}$$

Proof:

Let $y \in \overline{A} - \{x\}$ then a $(\tau^* - \tau)$ neighborhood of y contains a set of the form $G \cap B$ when $y \in G \in \tau$ and $y \in B \in \beta_x$. by definition of a singular set,

either B or B-{x} is τ -regular open so that $G \cap B$ is τ -neighborhood of y but $y \in \overline{A}$, so $G \cap B \cap A = \phi$ that is $y \in \overline{A}^*$ Hence $\overline{A} - \{x\} \subseteq \overline{A}^* \subseteq \overline{A}$. finally it is clear that $x \in \overline{A}^*$ if and only if $X \in (\overline{B - \{x\} \cap A})$ for every $B \in \beta_x$.

<u>Lemma 3.3</u>[4]

suppose $\tau \in LT(X)$ is P and β_x is a filter base of τ -singular (with respect to P) sets at x, where $x \in X$. let $\tau^* = <\tau U \beta_x >$ if $G \in \tau^*$ and $x \notin G$ then $G \in \tau$.

Definition 3.4[4]

A topological property P is called contractive if for a given member τ of LT(X) with property P any weaker member of LT(X) has property P.

Lemma 3.4:

suppose $\tau \in LT(X)$ has property P and that every singleton τ -Singular Set is τ -open, while β_x is an ultra filter of τ -singular (with respect toP) sets at x, where $x \in X$, let $\tau` = < \tau \cup \beta_x >$ if $\tau`$ has property P then every $\tau`$ - singular set at x is $\tau`$ - open.

Proof:

Suppose Y $\bigcup\{x\}$ is τ '- singular at x but is not τ '- open, so we assume that V is τ '- regular open and the $x \in \Psi_{\tau'}V$, by lemma 3,V is τ -open and by lemma 3.2 $\operatorname{cl}_{\tau'}V = \operatorname{cl}_{\tau}V$, since $\tau \subseteq \tau$ ', $V \subseteq \operatorname{int}_{\tau'} V \subseteq \operatorname{int}_{\tau'} \operatorname{cl}_{\tau'} V = \operatorname{V} V = \operatorname{Int}_{\tau'} V$

x, since $VU\{x\} \notin \tau'$ then $VU\{x\} \notin \beta_x$ that is β_x is not an ultra filter of τ -singular sets at x.

Theorem 3.3:

Suppose P is a semi – regular property and that $\tau \in LT$ (X) is p and every singleton τ -singular set is τ -open. Let D be an ultra filter of τ -dense sets. Given $x \in X$, l $_x$ be anltra filter of τ -singular (with respect to P) sets of x. Let $\tau = \langle \tau UDU (U_{x \in X} \beta_x) \rangle$ is τ has property p, then τ is a maximal P.

Proof:

Let $\tau^*=<\tau UD>$ which is sub maximal so τ ` is sub maximal suppose $VU\{x\}$ is τ ` – singular at x but is not τ `-open. As every singleton t-singular set τ -open is $BU\{x\}\in \beta_x$ then $x\in cl_{\tau}B$ and so $x\in cl_{\tau}B$ thus int $_{\tau^*}V$ is τ^* - regular open and so must be τ -regular open, Now τ^* is sub maximal and $(int_{\tau^*}V)$ $U\{x\}=(VU\{x\})\cap[((int_{t^*}V)U\{X-V\}U\{x\}]]$ we have $<\tau^*U\beta_xU$ $\{(int_{t^*}V)$ $U\{x\}\}>\subseteq \tau$ ` $(VU\{X\})$ But P is contractive, and V $U\{x\}$ is τ `-singular, so $<\tau U$ $\beta_xU\{(int_{\tau^*}V)$ $U\{x\}>$ is P, Now $(int_{t^*}V)$ $U\{x\}$ can not be $<\tau U$ $\beta_x>$ - regular open (other wise, $VU\{X\}$ is τ^* -open) so by lemma 3.3 int τ^*V is $<\tau U$ $\beta_x>$ - regular open and there fore $(int\ \tau^*V)$ $U\{x\}$ is $<\tau U$ $\beta_x>$ - singular set at x, which is not $<\tau U$ $\beta_x>$ - open (since $VU\{x\}$ is not τ `-open) which is a contradiction with lemma 3.4

Theorem 3.4:

Suppose P is contractive, semi-regular, and that $\mathsf{T} \in \mathsf{LT}(X)$ is non singular (with respect to P), then every τ_S singular set V $\mathsf{U}\{x\}$ such that $x \in \Psi_{\mathsf{T}^*}$ V is $\mathsf{T}_{\mathcal{S}}$ - open.

Proof:

Suppose τ_s (VU{X}) has property P where V is τ_s —regular open and x $\in \Psi_{\tau s}$ V, V is τ - regular open and $\Psi_{\tau s}$ V= Ψ_{τ} V now τ =< τ_s UD>, where D is a filter base of τ_s (VU{x})- dense sets , and because P is semi- regular

 $<\tau_s$ UDU $\{V\cup\{x\}\} > = \tau(V\cup\{x\})$ is also P, Hence $V\cup\{x\}$ is τ - singular at x , and so by hypothesis is τ - open but $x\in\Psi V$ so $x\in V$, that is $V\cup\{x\}=V\in \tau_s$

Definition 3.5 [6]

 $\boldsymbol{\tau}$ is feebly compact (Quasi – H – closed) if every countable open filter base has a cluster point.

Definition 3.6 [6]

let $h \in X$ we say that h is an almost H- point if there is accountable filter base of non empty T - regular open sets such that $\{h\} = \bigcap \{ Cl_{\tau}W \colon W \in \hat{W} \}$

Definition 3.7 [6]

A topological Space (X, τ) is an almost H – space (almost E_1 – space) if every point is an almost H – point (almost E_1 - point).

Theorem 3.5:

Suppose $\tau \in LT(X)$ is feebly compact if V is a τ - regular open and x is non – isolated in the subspace X-V Then V U $\{x\}$ is not singular if and only if x is an almost H-point (almost E_1 -point) in the Subspace X-V.

proof:

Let $\tau^* = \tau(V \cup \{X\})$ is not feebly compact if and only if There is a τ^* - open filter base $\zeta = \{G_i : i \in I\}$ such that $\cap \{cl\tau^* G_i : i \in I\} = \emptyset$. Now that is some $G \in \zeta$ such that $x \notin G$, and so for any $i,j \in I$, $G_i \cap G_j \neq \{x\}$ (other wise $G \cap G_i \cap G_j = \emptyset$) By lemma 3.3 for each $i \in I$, $G_{i^-} \{x\} \subseteq \operatorname{int}_{\tau}G : \subseteq Gi$, so $\zeta = \{\operatorname{int} \tau G_i : i \in I\}$ in a filter base of τ - open sets, But τ is feebly compact so ζg , Then there is as et $G_0 \in \zeta$ Such that $h \in (cl\tau G_0) - (cl\tau^*G_0)$, so by Lemma 3.4 h=x and there is a τ - nieghbour hood N of x Such that $N \cap V \cap G_0 = \emptyset$ Now G_0 Since $x \in cl\tau G_0$, and because V is τ -regular open $G_0 \cap (X - cl\tau V) \neq \emptyset$, if follows that for all $i \in I$, $G_i \cap (X - cl\tau V) \neq \emptyset$ and so that $G_i \cap (X - cl\tau V) \neq \emptyset$ if $G_i \cap (X -$

The main result

- 1) If P is a contractive semi-regular property then a maximal P topology is sub maximal.
- 2) Given $\tau \in LT(X)$ is sub maximal and has property P then τ is non singular if τ is maximal P.
- 3) If $\tau = \langle \tau UDU (U_{x \in X} \beta_x) \rangle$ where τ a o olo y as o y P, D b an l a fil denseosets and β_x b an l a fil of τ sin la (wi s c is a non-Pa)imal P expransion of τ .

References:

- 1- Hadi J. Mustafa and Jamil M. Jamil, on maximal feebly compact spaces, Al Mustansiray University, Education college (to appear).
- 2- Layth abd latif, on maximal topologies, Diala university, Education college,13(2005).
- 3- A.V. Arkhangelski I and P J Collins, On S b maximal S ac s, To Appl., 64 (1995) ,219- 241.
- 4- N. Bourbaki, Èlèments de Mathèmatique, Topologies Gènèral 3rd ed,Her mann, paris, 1961.
- 5- J. R. porter, R.M. Stephenson and R. G. Woods, maximal pseudo compact spaces, comment, Math. Univ. Carolinas (35) (1993).
- 6- J. R. porter, R. G. woods, Extension and absolutes of Hausdorff spaces, Springer- Verlag, New York –Berlin- Heidelberg, 1988.