

جمهورية العراق وزارة التعليم والبحث العلمي جامعة ديالى كلية العلوم قسم الرياضيات

حول الفضاءات الضبابية المنتظمة المعرفة على مجموعة ضبابية

رسالة مقدمة الى مجلس كلية العلوم – جامعة ديالى وهي كجزء من متطلبات نيل شهادة الماجستير في علوم الرياضيات

من قبل الطالبة

نور الهدى عبدالهادي حيدر

اشراف د. حسن عبدالهادي احمد الطائي

٢٠٢٣

0_1220

Chapter One

Some Basic Definitions

1.1 Introduction :-

We introduce some essential fuzzy set characteristics in addition to a few fundamental definitions and theorems in this chapter.

1.2 Some Basic Definitions and Properties of Fuzzy Set.

Definition (1.2.1)[6] Let X be a nonempty set. A fuzzy set \tilde{A} in X is characteristic by a member ship function. $\mu \tilde{A} : X \rightarrow [0,1]$ and we can write this fuzzy set as : $\tilde{A} = \{ (\tilde{X}, \mu \tilde{A} (x)) : x \in X . \mu \tilde{A} (x) \leq 1 \}$.

The collection of all fuzzy sets in X will be denoted by I^x . Where

 $I^{x} = \{ \tilde{A} : \tilde{A} \text{ is fuzzy set in } X \}.$

Definition (1.2.2) [2] The support of a fuzzy set \tilde{A} is the set of all $x \in X$ such that $\mu \tilde{A}(x) > 0$ and is denoted by $\int (\tilde{A})$.

Definition (1.2.3)[6] A fuzzy point \tilde{P}_x^r in X is a special fuzzy set with membership function defined by.

$$\tilde{P}_x^r(y) = \begin{cases} r, if \ x = y \\ 0, if \ x \neq y \end{cases}$$

Where $0 < r \le 1$, y is the support of $\tilde{P}_x^r(x)$.

Definition (1.2.4) [3] A fuzzy set \tilde{A} is said to be finite fuzzy set if $\int (\tilde{A})$ is a finite set.

Remark (1.2.5)[6]:

- 1) A nonempty set X is a fuzzy set with member ship $\mu x (x) = 1$, $\forall x \in X$. and X is called a crisp set.
- A membership function µØ̃ (x) = 0 ∀Ø∈X is called an empty set and denoted by Ø̃.

Definition (1.2.6)[6] Let \tilde{P}_x^r be a fuzzy point and \tilde{C} be a fuzzy set is nonempty set \tilde{X} then \tilde{P}_x^r is said to be in \tilde{C} or \tilde{C} contains \tilde{P}_x^r if $\mu \tilde{p}_x^r \leq \mu \tilde{c}$ (x) for all $x \in X$ and denoted by $X \in S(\tilde{c})$

Definition (1.2.7) [7] Let \tilde{A} and \tilde{B} be a fuzzy sets of a universal set X then.

- 1) $\tilde{A} \subseteq \tilde{B}$ if and only if $\mu \tilde{A}(x) \leq \mu \tilde{B}(x), \forall x \in X$
- 2) $\tilde{A} \subseteq \tilde{B}$ f and only if $\mu \tilde{A}(x) = \mu \tilde{B}(x), \forall x \in X$
- 3) \tilde{A}^c is the complement of a fuzzy set \tilde{A} with membership function $\mu \tilde{A}^c = 1 \mu \tilde{A}(x)$
- 4) $\tilde{C} = \tilde{A} \cup \tilde{B}$ if and only if $\mu \tilde{C}(x) = max \{ \mu \tilde{A}(x), \mu \tilde{B}(x) \} \forall x \in X.$
- 5) $\widetilde{D} = \widetilde{A} \cap \widetilde{B}$ if and only if $\mu \widetilde{D}(x) = \min \{ \mu \widetilde{A}(x), \mu \widetilde{B}(x) \} \forall x \in X .$
- 6) More generally for a family of fuzzy sets, {Ã ∝: ∝ ∈ Λ where is Λ is the any index set }the union C̃ = U_{∞∈Λ} Ã ∝ and the intersection D̃ = ∩_{∞∈Λ} Ã ∝ , and defied respectively by

$$\mu\,\tilde{c}(x) = \sup_{\alpha \in \Lambda} \{ \ \mu\,\tilde{A} \ \propto (x) \colon x \ \in X \}, \ \mu\,\widetilde{D}(x) = \inf_{\alpha \in \Lambda} \{ \ \mu\,\tilde{A} \ \propto (x) \colon x \ \in X \} \,.$$

Proposition (1.2.8)[4] Let \tilde{A} , \tilde{B} , \tilde{C} be fuzzy sets in X, then the following properties are satisfied.

1) Commutatively:

 $\max\{\mu \tilde{A}(x), \mu \tilde{B}(x)\} = \max\{\mu \tilde{B}(x), \mu \tilde{A}(x)\} and$ $\min\{\mu \tilde{A}(x), \mu \tilde{B}(x)\} = \min\{\mu \tilde{B}(x), \mu \tilde{A}(x)\}.$

2) Associativity :

 $\max \{ \mu \tilde{C}(x), \max \{ \mu \tilde{A}(x), \mu \tilde{B}(x) \} = \max \{ \mu \tilde{A}(x), \max \{ \mu \tilde{B}(x), \mu \tilde{C}(x) \}.$

3) **Idempotent :**

 $\mu \tilde{A}(x) = max \left\{ \mu \tilde{A}(x), \mu \tilde{A}(x) \right\}, \mu \tilde{A}(x) = min \left\{ \mu \tilde{A}(x), \mu \tilde{A}(x) \right\}.$

4) **Distributive :**

 $max \left\{ \mu \tilde{A}(x), min \left\{ \mu \tilde{B}(x) \right\}, \mu \tilde{c}(x) \right\} =$ $min \left\{ max \left\{ \mu \tilde{A}(x), \mu \tilde{B}(x) \right\}, max \left\{ \mu \tilde{A}(x), \mu \tilde{c}(x) \right\},$ and min $\left\{ \mu \tilde{A}(x), max \left\{ \mu \tilde{B}(x), \mu \tilde{c}(x) \right\} =$ $max \left\{ min \left\{ \mu \tilde{A}(x), \mu \tilde{B}(x), min \left\{ \mu \tilde{A}(x), \mu \tilde{c}(x) \right\} \right\}.$

- 5) min { $\mu \tilde{A}(x), \mu \tilde{\emptyset}(x)$ } = { $\mu \tilde{\emptyset}(x), \max\{\mu \tilde{A}(x), \mu \tilde{x}(x)\}$ = $\mu \tilde{x}(x)$
- 6) **Identity**: max{ $\mu \tilde{A}(x), \mu \tilde{x}(x)$ } = $\mu \tilde{x}(x)$
- 7) max{ $\mu \tilde{A}(x)$, min{ $\mu \tilde{A}(x)$, $\mu \tilde{B}(x)$ } = $\mu \tilde{A}(x)$
- 8) **De Morgan law:**

 $(max \{ \mu \tilde{A}(x), \mu \tilde{B}(x) \})^{c} = min \{ \mu \tilde{A}^{c}(x), \mu \tilde{B}^{c}(x) \}$

 $(min \{ \mu \tilde{A}(x), \mu \tilde{B}(x) \})^{c} = max \{ \mu \tilde{A}^{c}(x), \mu \tilde{B}^{c}(x) \}$

 $(\mu \tilde{A}^{c}(x))^{c} = \mu \tilde{A}(x).$

Definition (1.2.9)[1] A collection \tilde{T} on a fuzzy set \tilde{A} , such that $\tilde{T} \subseteq p(\tilde{A})$ is said

to be a fuzzy Topology on a fuzzy set \tilde{A} if it satisfied the following conditions .

- 1) $\tilde{A}\,, \widetilde{\varnothing}\, \in\, \tilde{T}\,$.
- 2) The intersection of finite members of fuzzy sets of \tilde{T} is a member of \tilde{T} .
- 3) The union of any member of \tilde{T} is a member of T.

 \tilde{T} is called a fuzzy topology for \tilde{X} , and the pair (\tilde{X}, \tilde{T}) is an fuzzy topological spaces. Every member of \tilde{A} is called \tilde{A} -open fuzzy set (or simply an open fuzzy set). A fuzzy set is \tilde{A} -closed if and only if its complement is \tilde{A} -open.

As in general topology, the indiscrete fuzzy topology contains only $\tilde{\emptyset}$ and \tilde{A} , while the discrete fuzzy topology contains all fuzzy sets.

Definition (1.2.10) [10] Let (\tilde{X}, \tilde{T}) be f.t.s. Let \tilde{B} be a fuzzy set in (\tilde{X}, \tilde{T}) , then the closure of \tilde{B} (denoted by \tilde{B}) and the interior of \tilde{B} (denoted by \tilde{B}^{o}) are defined respectively by (i.e

$$\tilde{B}^c = \cap \left\{ \, \widetilde{H} : \tilde{B} \, \subseteq \widetilde{H}, \, \tilde{H}^c \in \, \tilde{T} \, \right\} \, , \, \tilde{B}^o = \cup \left\{ \, \widetilde{K} : \widetilde{K} \, \subseteq \tilde{B}, \widetilde{K} \, \in \, \tilde{T} \, \right\} \, .$$

Definition (1.2.11) [6] Let (\tilde{X}, \tilde{T}) be f.t.s then a fuzzy set \tilde{B} is said to be a fuzzy neighborhood of a fuzzy point \tilde{P}_{x}^{r} if there exist a f.o.s \tilde{H} in (\tilde{X}, \tilde{T}) such that $\mu \tilde{P}_{x}^{r}(x) \leq \mu \tilde{H}(x) \leq \mu \tilde{B}(x)$.

Example (1.2.12) : Let X = {a,b,c} and $\tilde{A} = \{(a, .0.8), (b, 0.7), (c, 0.4)\}$

Then $\tilde{T} = \{\tilde{A}, \tilde{\emptyset}, \{(a, 0.4), (b, 0.3), (c, 0.3)\}\$, $(a, 0.3), (b, 0.1), (c, 0.1)\}$ is a fuzzy topological spaces on \tilde{A} .

Proposition (1.2.13) : Let (\tilde{A}, \tilde{T}) be a f.t.s , Let \tilde{B} , \tilde{c} be two fuzzy sets in (\tilde{X}, \tilde{T}) then for all $x \in X$

- 1) $\mu \,\overline{\widetilde{\emptyset}} = \mu \,\overline{\widetilde{\emptyset}}(x)$.
- 2) $\overline{\tilde{A}}$ is a f.c.s. .
- 3) if \tilde{H} is a fuzzy closed sets, such that $\mu \tilde{B}(x) \leq \mu \tilde{H}(x)$, when \tilde{B} is a fuzzy set then $\mu \tilde{B}(x) \leq \mu \tilde{B}(x) \leq \mu \tilde{H}(x)$.

4) \tilde{B} is a fuzzy closed sets if and only if $\mu \tilde{B}(x) = \mu \bar{\tilde{B}}(x)$ $\overline{(\max\{\mu \tilde{B}(x), \max \tilde{c}(x)\})} = \max\{\mu \bar{\tilde{B}}(x), \mu \bar{\tilde{c}}(x)\}}.$

5)
$$\mu \overline{\tilde{B}} = \mu \overline{\tilde{B}}(x)$$
.

6) if
$$\mu \tilde{B}(x) \leq \mu \tilde{C}(x)$$
, then $\mu \bar{\tilde{B}}(x) \leq \mu \bar{\tilde{C}}(x)$.

7) $\overline{\left(\min\{\mu \tilde{B}(x), \max \tilde{c}(x)\}\right)} \le \min\left\{\mu \bar{\tilde{B}}(x), \mu \bar{\tilde{c}}(x)\right\}}.$

1.3 Basic Definition and Interrelation ships

The fundamental concepts of a fuzzy T_1 - space, fuzzy T_2 - space, fuzzy regular spaces, and some of its characteristics were presented in this part. are going to be study the concepts of a fuzzy T_3 - space and some of its properties. This part presents a few examples and fuzzy regular space and theorems.

Definition (1.3.1) [8] A fuzzy topological space (\tilde{X}, \tilde{T}) is said to be a fuzzy T_1 – space if for every two distinct points \tilde{P}_{x1}^{r1} , \tilde{P}_{x2}^{r2} there exist two fuzzy open set \tilde{W}_1 and \tilde{W}_2 in \tilde{X} , such that

 $\mu^{\tilde{P}_{x1}^{r_1}} \leq \mu \widetilde{W}_1 \text{ , } \mu^{\tilde{P}_{x2}^{r_2}} > \mu \widetilde{W}_2 \text{ and } \mu^{\tilde{P}_{x2}^{r_2}} \leq \mu \widetilde{W}_2 \text{ , } \mu^{\tilde{P}_{x1}^{r_1}} > \mu \widetilde{W}_1 \text{ .}$

Definition (1.3.2) [8] A fuzzy topological space (\tilde{X}, \tilde{T}) is said to be a fuzzy T_2 space if for every two distinct points ${}^{\tilde{P}_{\chi_1}^{r_1}}$, ${}^{\tilde{P}_{\chi_2}^{r_2}}$ in \tilde{X} such that $\mu {}^{\tilde{P}_{\chi_1}^{r_1}} \leq \mu \widetilde{W}_1$, $\mu {}^{\tilde{P}_{\chi_2}^{r_2}} \leq \mu \widetilde{W}_2$, $min \{\mu \widetilde{W}_1, \mu \widetilde{W}_2\} = \emptyset$.

Definition (1.3.3) [8] A fuzzy topological space (\tilde{X}, \tilde{T}) is said to be a fuzzy regular spaces if for every a fuzzy closed set \tilde{F} in \tilde{X} and a fuzzy point \widetilde{P}_{X}^{r} in \tilde{X} such that $\mu \widetilde{P}_{X}^{r} > \mu \widetilde{F}$ there exist two fuzzy open set \widetilde{W}_{1} and \widetilde{W}_{2} such that $\mu \widetilde{P}_{X}^{r} \leq \mu \widetilde{W}_{1} \mu \widetilde{F} \leq \mu \widetilde{W}_{2}$ and min { $\mu \widetilde{W}_{1}, \mu \widetilde{W}_{2}$ } = \emptyset .

Definition (1.3.4) [16] A fuzzy topological space (\tilde{X} , \tilde{T}) is said to be a fuzzy T_3 – space if it is a fuzzy regular and fuzzy T_1 - space.

Remark (1.3.5) : Every fuzzy T_3 – spaces is a fuzzy T_2 – spaces

Theorem (1.3.6): A fuzzy topological space (\tilde{X}, \tilde{T}) is said to be a fuzzy regular if and only if there is a f. o. s. for every fuzzy point in \tilde{U} and every fuzzy point \tilde{P}_x^r in \tilde{U} there exist a f. o. s. for every fuzzy space \tilde{V} in \tilde{X} . Such that $\mu \tilde{P}_x^r \leq \mu \tilde{V}(x) \leq \mu \tilde{V}(x) \leq \mu \tilde{V}(x)$. **Definition** (1.3.7) [29] A fuzzy topological space (\tilde{X}, \tilde{T}) is said to be fuzzy Ro – space (f.Ro.s). If the $\mu \tilde{P}_x^r \leq \mu \overline{\tilde{U}}(x)$ when ever \tilde{U} is fuzzy open set in \tilde{X} and $\mu \tilde{P}_x^r \leq \mu \overline{\tilde{U}}(x)$.

Example (1.3.8) : Let $X = \{(a, 0.6), (b, 0.6), (c, 0.6)\}$ and

Let $\tilde{T} = \{\tilde{X}, \tilde{\emptyset} \{\{(a, 0.0), (b, 0.6), (c, 0.6)\}\}$.

Cleary is f. R_o. s But is not a fuzzy T_1 – spaces .

Theorem (1.3.9) : Every fuzzy regular spaces is a fuzzy topological space (\tilde{X}, \tilde{T}) then is a f. R₀. S.

Proof : Suppose that (\tilde{X}, \tilde{T}) is a fuzzy regular space.

We are show that (\tilde{X}, \tilde{T}) is a f.Ro.s. Let \tilde{U} be a f.o.s in \tilde{X} .

Let $\mu \tilde{P}_x^r \leq \mu \tilde{U}(x)$, So \tilde{U}^c is a fuzzy closed set in \tilde{X} and $\mu \tilde{P}_x^r \leq \mu \tilde{U}(x)$. Since (\tilde{X}, \tilde{T}) is a fuzzy regular space, then there exist two fuzzy open set \tilde{W}_1 and \tilde{W}_2 in \tilde{X} such that $\mu \tilde{U}^c(x) \leq \mu \tilde{W}_2$ and $, \min \{ \mu \tilde{W}_1(x), \mu \tilde{W}_2(x) \} = \tilde{\emptyset}$. So $\mu \tilde{P}_x^r \leq \mu \tilde{W}_1(x) \leq \tilde{W}_2(x)$ such that \tilde{W}_x^r is a f.o.s in \tilde{X} .

 $\mu \overline{\tilde{P}}_x^r \leq \mu \widetilde{W}_2^c(x)$ and Since $\mu \widetilde{W}_2^c \leq \mu \widetilde{U}$ then $\mu \overline{\tilde{P}}_x^r \leq \mu \widetilde{U}(x)$ and thus $(\widetilde{X}, \widetilde{T})$ is a f.Ro.s. .

1.4 Some Properties of Fuzzy Semi- Open Set.

The concept of fuzzy open sets and some of its characteristics are going to be studied in this part. In addition to the concept of fuzzy semi-closed sets and some of their characteristics, The fuzzy Semi- cl open set and the fuzzy Regular open set, the fuzzy Regular closed set, and finally the fuzzy Semi-cl open set are all presented in this section .

Definition (1.4.1)[17] Let \tilde{A} be a fuzzy set in fuzzy topological spaces (\tilde{X}, \tilde{T}) Then \tilde{A} is called a fuzzy semi-open set of X, if there exists a $\tilde{U} \in \tilde{T}$ such that $\mu \tilde{U}(x) \leq \mu \tilde{A}(x) \leq \mu \overline{\tilde{U}}(x)$. A fuzzy set \tilde{A} is fuzzy semi closed if and only if its complement \tilde{A}^c is fuzzy semi-open. The class of all fuzzy semi-open (resp., fuzzy semi-closed) sets in X.

Remark (1.4.2) Every fuzzy open set is a fuzzy semi open set, however the other way need not be true as illustrated by the example following.

Example (1.4.3) Let $X = \{a, b, c\}$ be a set and $I = \{0, 3, 5, 7, 1\}$ of membership for fuzzy sets in \tilde{X} . Let $\tilde{U} = \{(a,0.7), (b,0.0), (c,0.1)\}, \tilde{V} = \{(a,0.7), (b,0.5), (c,0.3)\}, and <math>\tilde{W} = \{(a,0.5), (b,0.5), (c,0.5)\}$ be fuzzy sets on \tilde{X} , and \tilde{T} the fuzzy topology generated by $\tilde{U}, \tilde{V}, \tilde{W}$. Then $\tilde{T} = \{\tilde{\emptyset}, \tilde{U}, \tilde{V}, \tilde{W}, \{(a,0.5), (b,0.0), (c,0.5)\}, \{(a,0.5), (b,0.5), (c,0.3)\}, \{(a,0.7), (b,0.0), (c,0.3)\}, \{(a,0.7), (b,0.0), (c,0.5)\}, \{(a,0.7), (b,0.5), (c,0.5)\}, \{(a,0.7), (b,0.5), (c,0.1)\}, \tilde{X}\}.$ Calculations give that fuzzy set \tilde{W} is both fuzzy semi-closed and fuzzy semi-open but $\mu \ \overline{W}^0 = \mu \ W$.

Theorem (1.4.4) A fuzzy set \tilde{A} of a fuzzy topological space (\tilde{X}, \tilde{T}) is f. s. o. s if and only if $\mu \tilde{A}(x) \leq \mu \overline{\tilde{A}}(x)$.

Remark (1.4.5) :

- 1) The union of any fuzzy members a f. s. o. s is a f. s. o. s.
- 2) The intersection of two f. s. o. s need not be a f. s. o. s as the following example.

Example (1.4.6) Let $X = \{a, b, c\}, T = \{X, \emptyset, \{a, 0.4\}, \{b, 0.6\}\}$. $\{(a, 0.4), (b, 0.6)\}\}$

$$B = \{ (a, 0.4), (c, 0.8) \}, A = \{ (b, 0.6), (c, 0.8) \}, are f. s. o. s$$

But $A \cap B = \{(c, 0.8)\}$ is not f. s. o. s.

Proposition (1.4.7) :

1) $\mu(\widetilde{A}^{o}(x))^{c} = \mu \,\overline{\widetilde{A}}^{c}(x)$. 2) $\mu \,\overline{\widetilde{A}}^{c}(x) = \mu \,(\widetilde{A}^{c}(x))^{o}$.

Proof. (1) $(\mu(\tilde{A}^o(x))^c = 1 - (\tilde{A}^o(x)) = 1 - \vee \{ \tilde{U} \mid \tilde{U} \leq \text{fuzzy open set and} \\ \mu \leq \mu \tilde{U} \leq \mu \tilde{A}(x) = \wedge \{ 1 - \mu \tilde{U} \mid \mu \tilde{U} \leq \text{fuzzy open set} \} \text{ and } \mu \tilde{U} \leq \mu \tilde{A}(x) = \wedge \{ \mu \tilde{V} \mid \mu \tilde{V}^C \leq \text{fuzzy open set} \} \text{ and } \mu \tilde{V} \geq \mu \tilde{A}^c, \text{ where } \mu \tilde{V}(x) = 1 - \mu \tilde{A}(x) = \mu \tilde{A}^c(x)$

(2) Similar to (1).

Theorem (1.4.8)[6] A fuzzy \tilde{B} of a f.t.s (\tilde{X}, \tilde{T}) is said to be a f.s.c.s, if and only if $\mu(\bar{B}^o(x)) \leq \mu \tilde{B}(x)$.

Theorem (1.4.9)[8] If \tilde{A} is f.s.o.s in and \tilde{U} is f.o.s in \tilde{X} the min { $\mu \tilde{U}(x), \mu \tilde{A}(x)$ } is a membership of a f. s. o. s in X.

Theorem (1.4.10) : A fuzzy set \tilde{A} of a f.t.s is a f.s.o.s. if and only if there exist a f.o.s \tilde{B} such that $\mu \tilde{B}(x) \leq \mu \tilde{A}(x) \leq \mu \tilde{B}(x)$.

Proof : first side :Let \tilde{A} be a f.s.o.s , then there exist a f. o. s \tilde{U} in \tilde{X} .

such that $\mu \widetilde{U}(x) \leq \mu \widetilde{A}(x) \leq \mu \overline{\widetilde{U}}(x)$.

Let $\mu \widetilde{U}(x) \leq \mu \widetilde{A}(x) \leq \mu \overline{\widetilde{U}}(x)$. Let $= \mu \widetilde{U}(x) = \mu \widetilde{B}(x)$, that \widetilde{B} is a f.s.o.s and $\mu \widetilde{B}(x) \mu \widetilde{A}(x) \leq \mu \overline{\widetilde{B}}(x)$.

Second side :Let \tilde{B} be a f.s.o.s, such that $\mu \tilde{B}(x) \leq \mu \tilde{A}(x) \leq \mu \overline{\tilde{B}}(x)$ (1) . Since \tilde{B} is a f.s.o.s, then there exist a f.o.s \tilde{U} such that

 $\mu \widetilde{U}(x) \leq \mu \widetilde{B}(x) \leq \mu \overline{\widetilde{U}}(x) \dots (2) \text{. From (1) and (2) we get}$ $\mu \widetilde{U}(x) \leq \mu \overline{\widetilde{B}}(x) \leq \mu \overline{\widetilde{U}}(x) \text{. So } \mu \widetilde{U}(x) \leq \mu \widetilde{A}(x) \leq \mu \overline{\widetilde{U}}.$ There four \widetilde{A} is a f. s. o. s. , of \widetilde{X} .

Theorem (1.4.11) If (\tilde{X}, \tilde{T}) is a f. t. s and let \tilde{Y} a fuzzy subspace of \tilde{X} such that $\mu \tilde{A}(x) \leq \mu \tilde{Y}(x) \leq \mu \tilde{X}(x)$ and \tilde{A} is a f.s.o.s in \tilde{X} , then \tilde{A} is a f.s.o.s in \tilde{Y} .

Theorem (1.4.12) Let \widetilde{U} be a f.o.s in \widetilde{X} and \widetilde{A} be a f.s.o.s in \widetilde{X} , then

 $\min \left\{ \mu \widetilde{U}(x), \mu \widetilde{A}(x) \right\} \text{ is a f.s.o.s in } \widetilde{U}.$

Remark (1.4.13) [6] The intersection of a f. s. c. s is a f. s. c. s.

Definition (1.4.14) [32] Let (\tilde{X}, \tilde{T}) be a f.t.s and \tilde{A} be a fuzzy set of \tilde{X} , then the intersection of all f.s.c.s which contain \tilde{A} is called (semi – closure of \tilde{A}) and denoted by($f((\tilde{A})^s)^c$).

Example (1.4.15) Let $\tilde{X} = \{ (a, 0.6), (b, 0.6), (c, 0.6) \}$

 $\tilde{T} = \{ \tilde{X}, \tilde{\emptyset}, \{ (a, 0.6), (b, 0.0), (c, 0.0) \}, \{ (a, 0.6), (b, 0.6), (c, 0.0) \} \}.$ Take $\tilde{A} = \{ (a, 0.0), (b, 0.6), (c, 0.6) \}$. So \tilde{A} is a f. semi – closure.

Remark (1.4.16) Let (\tilde{X}, \tilde{T}) be a fuzzy topological spaces and $\mu \tilde{A}(x) \leq \mu \tilde{B}(x) \leq \mu \tilde{X}(x)$ then.

1)
$$\mu \tilde{A}(x) \leq \mu f(\overline{\tilde{A}})^{s} \leq \mu \bar{A}(x).$$

2) $\mu f(\overline{\tilde{A}})^{s} \leq \mu f(\overline{(B')s})^{-}.$
3) $\mu \overline{\overline{((\overline{\tilde{A}})^{s}})^{s}} = \mu.F(\overline{\tilde{A}})^{s}.$
4) A fuzzy set \tilde{A} is a f,s.c.s if and only if $\mu \tilde{A}(x) = \mu f(\overline{\tilde{A}})^{s}.$
5) $f(\overline{\tilde{A}})^{s}$ is the smallest a f.s.c.s contains \tilde{A} .
6) $max \{\mu f(\overline{\tilde{A}})^{s}.\mu f(\overline{\tilde{B}})^{s}\} \leq f. \max(\mu \tilde{A}(x), \mu \tilde{A}(x))^{s}.$
7) $f. \{\overline{\mu}(\tilde{A}(x), \overline{(\overline{\tilde{A}})^{s}}), \min\{f.\mu(\overline{\tilde{A}})^{s}, f.\mu(\overline{\tilde{B}})^{s}\}.$

Theorem (1.4.17) If \tilde{A} is a f.c.s of (\tilde{X}, \tilde{T}) and $\mu \tilde{A}^o(x) \le \mu \tilde{B}(x) \le \mu \tilde{A}(x)$, then \tilde{B} is a f.c.s.

Proof:- Let \tilde{A} is a f.s.o.s, since $\mu \tilde{A}^o(x) \leq \mu \tilde{B}(x) \leq \mu \tilde{A}(x)$ (by hypothesis). $\mu \tilde{A}^c(x) \leq \mu \tilde{B}^c(x) \leq \mu (\tilde{A}^o)^c$. But $(\tilde{A}^o(x))^c = \mu (\tilde{A}^c)$ by (1.4.7). Then $\mu \tilde{A}^c(x) \leq \mu \tilde{B}^c(x) \leq \mu \tilde{A}^c$, and by (theorem 1.4.10), \tilde{B}^c is a f. o. s, So $(\tilde{B}^c)^c$ is a f.c.s, which means \tilde{B} is a f.c.s.

Remark (1.4.18) :

A fuzzy set \tilde{B} of a f.t.s (\tilde{X}, \tilde{T}) is a f.s.c.s. if and only if there exist a f.c.s, \tilde{F} such that $\mu \tilde{F}^{c}(x) \leq \mu \tilde{B}(x) \leq \mu \tilde{F}(x)$.

Definition(1.4.19)[32]Let(\tilde{X} , \tilde{T}) be a f.t.s and let $\mu \tilde{A}(x) \leq \mu \tilde{B}(x), \mu \tilde{P}_x^r \leq \tilde{X}(x)$, then \tilde{P}_x^r is said to be (semi – interior point) if and only if there exist a f.o.s, \tilde{U} such that $\mu \tilde{P}_x^r \mu \tilde{U}(x) \leq \mu \tilde{A}(x)$.

Remark (1.4.20):Let (\tilde{X}, \tilde{T}) be a f. t. s and $\mu \tilde{A}(x) \leq \mu \tilde{B}(x) \leq \mu \tilde{X}(x)$ then .

- 1) $\mu \tilde{A}^o(x) \leq \mu \overline{(A^{\tilde{}})^s} \leq \mu \tilde{A}(x).$
- 2) $\mu \tilde{A}^o(x) \leq \mu \tilde{B}^o$.
- 3) $\overline{(\mu \tilde{})}^{os} = \mu \tilde{A}^{os}$.
- 4) \tilde{A} is a f.o.s if and only if $\mu \tilde{A}^{os} = \mu \tilde{A}(x)$.

Theorem (1.4.21)Let (\tilde{x}, \tilde{T}) be a f.t.s , $\mu \tilde{A}(x) \leq \mu \tilde{X}(x)$, then $\mu \tilde{P}_x^r \leq \mu f(\tilde{A})^s$ if and only if every a f.s.o.s \tilde{U} which contains \tilde{P}_x^r , \tilde{U} contains at least one fuzzy point of \tilde{A} that $Min \{\mu \tilde{A}(x), \mu \tilde{U}(x)\} \neq 0$.

Proof : First side Let $\mu \tilde{P}_x^r \leq \mu f(\tilde{A})^s$, and let \tilde{U} be a f. s. o. s such that $\mu \tilde{P}_x^r \leq \mu \tilde{U}(x)$ and , $\min \{\mu \tilde{A}(x), \mu \tilde{U}(x)\} = 0$, then \tilde{U}^c is a f.s.c.s and $\mu \tilde{P}_x^r > \mu \tilde{U}^c(x)$. Since $f(\tilde{A})^s$ is the intersection of all f.s.c.s , which contain \tilde{A} and , $\mu \tilde{P}_x^r \leq \mu f(\tilde{A})^s$ the $\mu \tilde{P}_x^r < \mu \tilde{U}^c$, which is contradiction so $\min \{\mu \tilde{A}(x), \mu \tilde{U}(x)\} \neq 0$.

Second side: Let \tilde{U} be a f.s.o.s and $\mu \tilde{P}_x^r \leq \mu \tilde{U}(x)$ and $\min \{\mu \tilde{A}(x), \mu \tilde{U}(x)\} \neq 0$. To show that $\mu \tilde{P}_x^r \leq \mu f(\bar{A})^s$, Let $\mu \tilde{P}_x^r > \mu f(\bar{A})^s$. So the exist a f. c. s, \tilde{V} contains \tilde{A} and $\mu \tilde{P}_x^r > \mu \tilde{V}(x), \tilde{V}^c$ a f.s.o.s. And $\mu \tilde{P}_x^r < \mu \tilde{V}^c(x)$. So $min \left\{ \mu \tilde{V}^c(x), \mu \tilde{A}(x) \right\} = 0$. Which contraction, therefore $\mu \tilde{P}_x^r \le \mu f(\bar{A})^s$.

Definition (1.4.22) [17] A fuzzy set \tilde{B} of a fuzzy topological spaces(\tilde{X}, \tilde{T}) is said to be a fuzzy regular open set (f.r.o.s.) if $\mu \,\overline{\tilde{B}}(x) = \mu \overline{\tilde{B}}^0(x)$.

Remark (1.4.23) Every a f. r. o. s. is a f. o. s. and the converse need not be true as the following Example.

Example (1.4.24) Let $\tilde{X} = \{ (a, 0.7), (b, 0.6), (c, 0.4) \}$ and

Let $\tilde{T} = \{ \tilde{\emptyset}, \tilde{X}, \{ (a, 0.3), (b, 0.0), (c, 0.0) \}$

Bea f. t. s de find on \tilde{X} . Take $\tilde{A} = \{ (a, 0.3), (b, 0.0), (c, 0.0) \}$ clearly

 \tilde{A} is a f.o.s but is not a f.r.o.s.

Definition (1.4.25)[28] A fuzzy set \tilde{C} of a fuzzy topological spaces(\tilde{X} , \tilde{T}) is said to be a fuzzy regular closed set (f.r.c.s.) if $\mu \tilde{C}(x) = \mu \tilde{C}^0(x)$.

Remark (1.4.26) Every f. r. c. s. is a f. c. s and the converse need not be true as the following example :-

Example (1.4.27) In the example (1.4.24) take

 $\widetilde{D} = \{ (a, 0.4), (b, 0.6), (c, 0.4) \}$ clearly \widetilde{D} is a f. c. s But not f. r. c. s.

Theorem (1.4.28) Let (\tilde{X}, \tilde{T}) be a f.t.s and let:-

- 1) \widetilde{U} be a f.o.s in \widetilde{X} , then $\overline{(\widetilde{U})}^o$ is a f.r.o.s.
- 2) \tilde{F} is a f.o.s in \tilde{X} , then $\overline{(\tilde{F})}^o$ is a f.r.o.s.

Proof (1) To show $\overline{\widetilde{U}}^0$ is a Fuzzy regular open set . we have to show

 $\mu \ \overline{(\widetilde{U})^o} = \mu \ \overline{((\overline{C})^o)^o} \)^o . \text{Now since } \mu \ \overline{\widetilde{U}}^{\ 0} \le \mu \overline{\widetilde{U}} \ (\text{ x) then } \mu \ \overline{((\overline{C})^o)^o} \)^o \le \mu \overline{\widetilde{U}}(\text{x}) = \mu \overline{\widetilde{U}} \ (\text{ x) . So } \mu \ \overline{((\overline{C})^o)^o} \)^o \le \mu \ \overline{(\widetilde{U})^o} \ \ (1)$

الخلاصة

قمنا في هذا العمل بدراسة بعض انواع الفضاءات المنتظمة الضبابية بما في ذلك الفضاءات المنتظمة الضبابية شبه المغلقة و الفضاءات المنتظمة الضبابية الشبه المفتوحة و الفضاءات المنتظمة الضبابية والفضاءات الشبه المنتظمة و الشبه الغامضة ثم تعميمها و درسنا بعض النظريات الحفظ التي تخص هذه الفضاءات الضبابية وبعض الخصائص الضبابية الوراثية الغامضة التي ترتبط بهذه الفضاءات الغامضة وتوصلنا الى بعض النتائج المهمة :

اذا كان الفضاء الضبابي (\tilde{X}, \tilde{T}) عبارة عن فضاءات منتظمة غامضة و فضاءات شبه متماثلة غامضة فأن الفضاء الضبابي (\tilde{X}, \tilde{T}) هي فضاءات شبه ضبابية غامضة .

الفضاء الضبابي ($\widetilde{X}, \widetilde{T}$) هي فضاءات شبه غامضة و فضاءات منتظمة معممة اذا وفقط اذا ($\widetilde{X}, \widetilde{T}$) هي عبارة فضاءات شبه منتظمة وشبه ضبابي .

الفضاء الضبابي ($\widetilde{X}, \widetilde{T}$) هي فضاءات عادية معممة غامضة اذا كان الفضاء ($\widetilde{X}, \widetilde{T}$) هي عبارة عن فضاءات عادية و غامضة و فضاءات

 \widetilde{U} in $\widetilde{X} \ \mu \widetilde{P}_x^r \le \widetilde{X}, \widetilde{T}$) \mathbb{E} library \widetilde{U} in $\widetilde{X} \ \mu \widetilde{P}_x^r \ge \widetilde{X}, \widetilde{T}$) \mathbb{E} is the endotroised of the matrix \widetilde{U} is a second of the matrix \widetilde{U} is a second of the matrix \widetilde{U} in $\widetilde{X} \ \mu \widetilde{P}_x^r \le \mu \widetilde{V}(x) \le \mu \widetilde{U}(x)$.

ليكن الفضاء الضبابي $(\widetilde{X},\widetilde{T})$ هو الفضاء الطوبولوجية الغامضة فأن العبارات التالية متكافئة .

- . الفضاء $(\,\,\widetilde{X}\,,\,\widetilde{T}\,)$ هي فضاءات شبه منتظمة غامضة او فضاءات منتظمة شبه مفتوحة غامضة .
- ن بالنسبة للنقطة الغامضة \widetilde{P}^r_x in \widetilde{X} و لكل الفضاءات شبه المفتوحة الغامضة \widetilde{A} حيث تحتوي على \widetilde{B} . النقطة الغامضة توجد فضاءات شبه مفتوحة غامضة \widetilde{B}