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Abstract 

    A significant impediment to reducing worldwide enteric CH4 emissions 

is the problem of adapting mitigation measures to grazing ruminants; this 

area requires additional investigation. This study aimed to investigate the 

impact and explore the relationship between raising and lowering levels of 

3-NOP in bovine diets in order to impede methanogenesis. The sole CH4 

contributor is the end-user process of ruminant fermentation and faeces, 

especially those of beef and dairy cattle. The amount of carbon dioxide 

emission from the human body during its lifetime constitutes a small part 

of the carbon balance in the atmosphere. Their dose-level potential must 

be assessed whenever feed additives become available in ruminant diets. 

Feed additives are managed in trace amounts to impact on rumen 

metabolism. Designed and produced around 2012, 3-Nitrooxypropanol is 

a synthetic, non-toxic chemical molecule that inhibits the CH4 pathway. 

Its molecular structure is like that of the methyl coenzyme M. The 

zootechnical supplement 3-NOP lowers the amount of enteric methane 

CH4 that cattle release during milk production and reproduction while 

raising the milk fat concentration. In conclusion, the 3-NOP is established 

to be a practical CH4 mitigator at elevated and intermediate dosages, 

recommending that it may have application as an enteric CH4 mitigator. 
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Introduction 

A major worldwide environmental issue, 

the greenhouse effect is caused by gases 

such as carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O), and ozone (O3) 

that absorb infrared radiation from the 

atmosphere and contribute to climate change 

and global warming (Lashof and Ahuja, 

1990). Ruminants produce methane, a 

substantial greenhouse gas (Alvarez-Hess et 

al., 2019). Methane, the second most major 

greenhouse gas introduced into the 

atmosphere, is responsible for 19% of total 

effective radiative forcing (Thornhill et al., 

2021). As in the case of animal digestive 

tracts, in humans, the primary production of 

CH4 occurs through the metabolism of 

Methanobrevibacter smithii, which is 

present in the distal colon, and 

Methanosphaera stadtmanae, a type of 

methanogenic species (Gaci et al., 2014). To 

enhance animal performance or lower CH4 

emissions, researchers have tried various 

treatments targeting the rumen microbiota 

over the past few decades (Tseten et al., 

2022). Diet modification and feed additives 

lower enteric CH4 emissions more 
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inexpensively, making them a potentially 

better option (Honan et al., 2021). 

Interpretations in feed additive routine are 

normally presumed to emerge from 

differences in feed intake, diet composition, 

roughage quality, and rumen fermentation 

requirements (Bannink et al., 2023). Feed 

additives may directly or indirectly suppress 

methanogenic archaea, reducing CH4 

emissions. As a possible intestinal CH4 

inhibitor, a synthetic molecule called 3-NOP 

is a structural analogue of methyl-coenzyme 

M (Duval and Kindermann, 2012; Araújo et 

al., 2023), (Figure 1). The 3-NOP substance 

is synthesized by chemo selective reduction 

to improve the efficacy of calcium channel 

antagonists (Ogawa et al., 1990). Regarding 

3-NOP, the compound has undergone 

varying phases of experimental testing on 

several ruminant species, including dairy 

cows, beef cattle, and sheep (Romero-Pérez 

et al., 2015). In general, the molecule can 

reduce enteric CH4 emissions. A 

commercial feed additive called 3-NOP has 

shown promise since it reliably reduces the 

production of CH4 in both small and large 

ruminant trials (Alemu et al., 2021a). 

Dijkstra et al. (2018) have shown that 3-

NOP can reduce intestinal CH4 emissions in 

dairy cattle by an average of more than 

30%. Other studies found that 3-NOP 

decreases CH4 emissions in sheep and dairy 

cattle by up to 60% (Yu et al., 2021). 

Generally, the rumen molar proportion of 

acetate has decreased with the 

administration of 3-NOP and other CH4 

inhibitors, while the molar proportion of 

propionate has grown and the acetate-to-

propionate ratio has decreased 

simultaneously (Haisan et al., 2014). The 3-

NOP exhibits negligible impact on 

populations of bacteria and protozoa, hence 

verifying the compound's specificity in 

targeting Methyl-coenzyme M reductase 

(MCR) found exclusively in archaea 

methanogens and not in other rumen 

microorganisms (Jayanegara et al., 2018). 

The 3-NOP is added constantly to the diet 

because it seems to be rapidly metabolized 

in the rumen (Duin et al., 2016). Despite 

claims that it reduces enteric CH4 emissions 

in dairy and beef cattle, 3NOP has no long-

term effect on downstream anaerobic 

digestion (Nkemka et al., 2019). 

Nonetheless, longer-term dose-response 

research with dairy cows at various lactation 

phases is needed to assess the efficacy of 3-

NOP in high-forage diets (Schilde et al., 

2021). This review aimed to illustrate the 

effect and investigate the affinity between 

extending and reducing levels of 3-NOP in 

bovine diets to inhibit methanogenesis. 

 Methane as a Greenhouse gas  

The origins of agriculturally emanated 

methane emissions are enteric fermentation 

and, to a more secondary extent, ruminant 

bovine manure, meaning that the livestock 

industry donates to climate change (Ripple 

et al., 2014). Methane is the second most 

abundant gas on the globe, trapping 28 times 

more heat than carbon dioxide during 100 

years (Almeida et al., 2023). Methane from 

enteric fermentation accounts for 44% of 

animal greenhouse gas emissions (Kelly et 

al., 2022).  

Effect of Feeding 3-NOP on Ruminal 

Fermentation 

Ruminal gram-positive bacteria a matter 

of fact are involved in the fermentation 

process that produces acetate, butyrate, 

lactate, hydrogen, and ammonia 

fermentation products that are coupled with 

methanogenesis (Ratti et al., 2014; 

Matthews et al., 2019; Shinkai et al., 2024). 

Kinley et al. (2020) have demonstrated that 

the direct inhibition of CH4 synthesis causes 

an increase in H2 emissions, depending on 
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the strength of CH4 suppression and the 

availability of alternate H2 metabolic routes. 

Ruminal methanogens, which account for 

less than 5% of the rumen microbiota, 

produce all methane in cows (Pitta et al., 

2016). Adding 3-NOP impacted total 

volatile fatty acid (VFA) concentration, with 

a minor drop of 3-NOP medium dose 

(Alemu et al., 2021a).  The rumen 

microbiota primarily converts bovine feed to 

volatile fatty acids (VFA), releasing CO2 

and H2, which are then used by 

methanogenic archaea to produce methane 

(Knapp et al., 2014). Feeding the 3-NOP 

delayed the methanogenesis in ruminants by 

increasing H2 emissions is an inadequate or 

unsuccessful formulation (Vyas et al., 2018; 

Alemu et al., 2021b). Simply, because the 

availability of H2 is a result of minimizing 

methanogenesis due to feeding the 3-NOP 

or any effective methanogenesis inhibitors 

like monensin and other ionophores. This is 

confirmed in the current review: 

Methanogens in the rumen convert CO2 to 

CH4 using H2 generated during rumen 

microbial fermentation (Morgavi et al., 

2010). Various techniques to decrease CH4 

emissions have been proposed, such as 

adjusting animal management and breeding, 

refining their meals, and improving the 

quality of their feed (Hristov et al., 2013). 

Recently, Honan et al. (2021) and Arndt et 

al. (2022) examined the methods for 

reducing CH4, such as feed additives added 

in small amounts to alter rumen metabolism 

and decrease methanogenesis. Direct 

suppression of methanogenesis is the most 

successful strategy for intestinal CH4 

decrease (Almeida et al., 2021).                

 

Figure 1. (A) Reaction catalyzed by MCR. (B) Structure of the inhibitor 3-nitrooxypropanol (3-

NOP) 

Source: Schrickel (2017). 
 

Efficacy and Mechanism of (3-NOP) 

The 3-NOP is now approved for use in 

the European Union, Brazil, and Chile, 

among other countries (Kebreab, 2022). It is 

still awaiting registration in the U.S. and 

Canada (Kebreab, 2023). The initial study 

conducted on sheep to examine the 

effectiveness of 3-NOP on generating 

animals was an in vivo inquiry (Martinez-

Fernandez et al., 2014). Because of the 

chemicals that make up 3-NOP, it is highly 

soluble and has rapid metabolism in the 

rumen (Duin et al., 2016). The 3-NOP is a 

special kind of chemical since it metabolizes 

into endogenous compounds and possesses 

two functional groups: an organic nitrate 

ester group and a primary alcohol (Figure 2) 

(Thiel et al., 2019a). Three main metabolites 

are formed when 3NOP is oxidized to 3-

nitrooxypropionic acid (NOPA), which is 

subsequently hydrolyzed to 3-

hydroxypropionic acid (HPA) and inorganic 

nitrate. The trace levels of 3-NOP were 
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detected in plasma two hours after the dose 

and rapid metabolism (Thiel et al., 2019b).  

The active ingredient 3-NOP may be 

dangerous to breathe in, according to 

the Panel on Additives and Products or 

Substances used in Animal Feed (FEEDAP) 

conclusion. It is uncomfortable for the skin 

and irritating to the eyes, but does not 

affect skin sensitization (FEEDAP, 2021).  

Kim et al. (2019) revealed that the 

effectiveness of 3-NOP depends on the 

method of application, dose amount, and 

nature of the diet. A 3-NOP supplement to 

ruminants halts the final stage of 

methanogenesis in the rumen by oxidizing 

the enzyme Methyl-coenzyme M reductase 

(MCR) and inhibiting the reduction of CO2 

by dissolved H2 to generate CH4 (Duin et 

al., 2016). The MCR is a crucial enzyme in 

the process of methanogenesis. This enzyme 

is saturated by 3-NOP, which lowers the 

archaea's ability to produce CH4 (Owens et 

al., 2020). Feeding 3-NOP to Holstein-

Friesian cows in the early stages of lactation 

is an efficient way to reduce methane 

emissions while also improving the apparent 

total tract digestibility of nutrients (Van 

Gastelen et al., 2020). In high-yielding 

cows, 3-NOP added at 40–80 mg/kg DM of 

feed decreased CH4 emissions by 30% but 

increased H2 emissions by 64-fold; the 

intensity of H2 emissions declined over time 

(Hristov et al., 2015). 

Sofyan et al. (2022) demonstrated that 

the 3-NOP has a significant inhibiting effect 

on CH4 emission and no influence on animal 

dry matter intake (DMI) in several 

experiments. Inhibition of ruminal 

methanogenesis leads to increased molar 

proportion of propionate at the expense of 

acetate. Therefore, inhibition of 

methanogenesis improves the utilization 

efficiency of metabolizable energy (Melgar 

et al., 2020). The 3-NOP compound is 

introduced as a pelleted blend that can be a 

crucial element of the product in the 

European dairy market (Van Wesemael et 

al., 2019). The addition of 3-NOP did not 

result in changes to the overall numbers of 

protozoa (Moreno, 2020). 
 

 

Figure 2. The primary mechanism in the  of ruminants that generates CH4 and how 3-rumen

NOP inhibits it. 3-NOP = 3-nitrooxypropanol; NOPA = 3-nitrooxypropionic acid; HPA = 3-

hydroxypropionic acid) 

Source: Yu et al. (2021). 
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Doses of 3-Nitrooxypropanol 

The 3-Nitrooxypropanol, known as 

Bovaer® 10, is a small-grained white 

powder that flows smoothly (FEEDAP, 

2021). The minimum amount needed for 3-

NOP is 10%, with propylene glycol serving 

as a diluent and dried and precipitated silicic 

acid as a carrier. For all ruminants to 

produce milk and reproduce, the supplement 

should provide a minimum of 52.8 mg 3-

NOP and a maximum of 88 mg 3-NOP per 

kilogram of complete feedstuff (moisture 

content of 12%), (Schilde et al., 2021). 

When 3NOP was added (60 mg of feed dry 

matter), the yield of CH4 decreased by 21% 

and 27%, respectively, but the yield of milk 

remained unchanged, The 200 mg dose 

reduced ovary size, alanine 

aminotransferase (ALT), and lactate 

dehydrogenase (LDH) blood levels (Melgar 

et al., 2020).  

3-Nitrooxypropanol with other feed 

additives  

The combined effects of 3-NOP and 

monensin (MON) were investigated for the 

first time with the ionophore monensin 

(Romero-Pérez et al., 2016). An enzymatic 

inhibitor called 3-NOP has been shown to 

reduce enteric (Kononoff, 2024) emissions 

in ruminants, whereas monensin (MON) has 

a moderate and occasionally transient effect 

on CH4 generation (Romero-Pérez et al., 

2016), which means it indirectly reduces it 

(Gutierrez-Bañuelos et al., 2008).  Fatty 

acid (FA) type also plays a key role by 

suppressing methanogens, fat and 3-NOP 

operate differently has a lower capacity for 

reduction (Ivan et al., 2013). All 

combinations of fat, nitrate, and 3-NOP did 

not result in CH4 reductions that were 

greater than separate supplementation of the 

most potent additive within the combination 

(Maigaard et al., 2024).  Implementing 3-

NOP and canola oil in animal food rations 

may be responsible for the CH4 decrease, 

but more studies are needed considering 

these food products' ability to aggravate the 

digestion of extra substances that lead to 

worse animal performance (Zhang et al., 

2021). Differently from the other inhibitors 

that act on ruminal bacteria or protozoa 

entities, 3-NOP is a highly selective 

inhibitor that targets (Bartzanas et al., 2023) 

only the guiding rumen methanogens. While 

canola oil altered the space ecology and its 

numbers, it also contributed to the lowered 

count of the rumen protozoa (Zhang et al., 

2021). In response to CH4 inhibition, 3-

NOP, and chloroform have demonstrated 

comparable alterations in rumen 

metabolism, such as a shift towards 

increased generation of propionic acid and a 

decrease in acetate, along with an increase 

in branched fatty acids (Melgar et al., 2019). 

Based on Grainger and Beauchemin (2011), 

the starch content of the diet and subsequent 

ruminal starch fermentation leads to low 

ruminal pH, which inhibits the growth of 

protozoa and methanogens and lowers the 

concentration of MCR enzymes. Therefore, 

compared to low-starch diets, adding 3-NOP 

to high-starch diets may inhibit the MCR 

enzyme more effectively (Van Gastelen et 

al., 2022). In commercial beef feedlots, a 

modest dose of 3-NOP added to corn-based 

finishing diets resulted in a 76% reduction 

in CH4 generation (Alemu et al., 2021b). 

Effect of 3-NOP on Animals’ 

Performance 

One example of an in vivo chemical 

inhibitor is 3-NOP (Martins et al., 2024), 

which can lower intestinal CH4 emissions in 

dairy cows by up to 30% (FAO, 2023) 

without negatively impacting the animals' 

performance (i.e., milk fat concentration) 

(Hristov et al., 2022; Martins et al., 2024).  
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The effectiveness of 3-NOP in decreasing 

intestinal CH4 emissions and consequently 

enhancing feed conversion efficiency in 

cattle (Moreno, 2020). that are fed diets rich 

in forages and grains (Vyas et al., 2018). 

Enteric CH4 production was proven to be 

decreased by around 50% when 

pharmacologic inhibitors were added 

(Hristov et al., 2013). The findings have 

shown that dietary supplementation with 3-

NOP had a negligible effect on milk yield 

(Baumont, 2018) DM intake, or milk for fat 

and protein (Van Gastelen et al., 2019). The 

3-NOP therapy validates the encouraging 

rise in body weight depending on 

concentration and metabolism (Martinez-

Fernandez et al., 2018). The 3-NOP 

methane mitigation effect decreases before 

feeding and peaks right after feeding 

(Hristov and Melgar, 2019; Moreno, 2020). 

Table 1. Results of studies on Additive of the 3-nitrooxypropanol (3-NOP) to Minimize Methane 

in Cattle 

Addition amount Aims Results References 

The 3-NOP applied 

at 60 mg/kg feed 

dry matter 

Impact of 3-

nitrooxypropanol (3-

NOP) on the content of 

emission enteric methane 

in from Holstein dairy 

cows, and production of 

milk.  

The 3-NOP reduced 

daily methane emission, 

emission yield, and 

emission intensity by 

26, 27, and 29%, 

respectively, when 

treated at 60 mg/kg feed 

dry matter. Carbon 

dioxide emissions from 

the mouth were 

unaffected, while 3-

NOP increased 

hydrogen emissions six 

times. 

(Melgar et al., 

2021) 

The 3-NOP applied 

at 60 mg/kg feed 

dry matter 

Impact of 3-

nitrooxypropanol (3-

NOP), a forceful 

methane inhibitor and 

metabolically. 

The 3-NOP applied at 

60 mg/kg feed dry 

matter decreasing 

in Methanobrevibacter 

ruminantium by 3-NOP 

feeding. 

(Pitta et al., 

2021). 

 

 

The 3-NOP applied 

at 52 mg /kg DM 

(3-NOP) and a diet  

 

Impact of 3-

nitrooxypropanol (3-

NOP) on enteric methane 

emission in dairy cows 

in early lactation.  

3-NOP applied at 52 mg 

/kg DM enteric 

emission of carbon 

dioxide was not 

affected, and hydrogen 

emission was increased. 

 (Van Gastelen 

et al., 2019). 

The 3-NOP applied 

at 60 mg/kg feed 

DM  

 

Impact of 3-

nitrooxypropanol (3-

NOP) on enteric methane 

emission, in lactating 

dairy cows.  

The 3-NOP applied at 

60 mg/kg feed DM is a 

peak level of methane 

relief after feeding and 

underneath before 

feeding. 

(Hristovand 

Melgar 2019; 

Moreno, 2020).  
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The 3-NOP applied 

at 2.5 g animal/day  

Impact of 3-

nitrooxypropanol (3-

NOP) on methane (CH4) 

and H2 production.  

 The 3-NOP applied at 

2.5 g animal/day) is an 

inhibitor of 

methanogenesis and 

fermentation process. 

(Martinez-

Fernandez et al., 

2018). 

.

Conclusions 

In conclusion, 3-NOP affected dairy 

animals more antimethanogenic than it did 

beef cattle. More data induced by this line of 

research backs the vision that 3-NOP could 

safely mitigate methane production in cattle. 

The 3-NOP was proven to be an effective 

CH4 mitigator at both high and moderate 

dosages, suggesting that it may have 

application as an enteric CH4 mitigator. 

Prospective studies should probe the 

potential additive or synergistic influences 

of combining dietary mitigation techniques 

with distinct steps to maximize mitigation 

potential. 
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