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ABSTRACT 
 

The integration of information technology into civil engineering 

represents a significant advancement in the intelligent monitoring and 

control of built environments, thereby enhancing safety, efficiency, and user 

comfort. A crucial aspect of this integration is indoor air quality (IAQ), 

which has a significant impact on human health. Poor IAQ, particularly in 

hospitals, can lead to sick building syndrome (SBS), resulting in symptoms 

such as headaches, fatigue, and cognitive impairment. 

This dissertation propose a deep learning (DL) framework for SBS, 

combining indoor air quality classification with environmental condition 

prediction. The system was designed to work with real data from 

environmental sensors collected over a year at Baqubah Teaching Hospital, 

comprising over 523,524 samples with ten key features. The hybrid 1D-

CNN-BiLSTM model achieved the highest classification accuracy of 94.8%. 

The model was further optimized using a multi-stage framework. While 

these improvements reduced accuracy to 92%, they significantly improved 

computational efficiency; inference time decreased from 20.8 seconds to 

0.66 seconds, and file size decreased from 5.17 MB to 1.72 MB. 

In addition to classification, the model was also used to predict 

thermal comfort indicators, specifically temperature and relative humidity. 

Utilizing a sliding window of 120 time steps, the model effectively predicted 

environmental conditions for the next 60 minutes, achieving R² exceeding 

0.99 for both variables. This confirms its robustness and reliability in 

environmental predictions. 

       

 



Chapter One                                   General 

Introduction 

1 
 

 

 

 

 

 

Chapter One 

 
GGeneral 

Introduction 



Chapter One                                   General Introduction 

1 
 

Chapter One 

General Introduction 

1.1 Introduction  

Human efforts have continuously aimed to improve living standards, 

evolving from basic shelters to technologically advanced buildings that 

provide safety, comfort, and energy efficiency. However, these 

advancements introduce new challenges related to maintaining IAQ. As 

modern societies spend a significant portion of their time indoors, whether 

at home, in offices, or in healthcare facilities, the IAQ has become a critical 

factor for health and well-being. Poor IAQ has been linked to a wide range 

of adverse health outcomes, including respiratory problems, cognitive 

impairments, general discomfort, and reduced productivity [1]. 
 

The issue of IAQ is particularly critical in healthcare settings, such as 

hospitals, where vulnerable patients and healthcare workers are exposed to 

complex indoor environments. High occupancy rates, frequent human 

activity, and the presence of sensitive individuals increase the risk of 

exposure to airborne pollutants and infectious agents [2]. According to the 

World Health Organization (WHO), poor IAQ contributes to nearly 3.2 

million deaths each year, underlining the global need for effective 

monitoring, management, and mitigation strategies to protect public health 

[3]. 
 

SBS is a major concern associated with poor IAQ, causing symptoms 

such as headaches, fatigue, eye irritation, and respiratory issues, which often 

subside when individuals leave the affected environment. These symptoms 

are linked to low ventilation, temperature and humidity fluctuations, and 

high concentrations of pollutants including Carbon Dioxide (CO₂), Total 
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Volatile Organic Compounds (TVOCs), particulate matter (PM2.5, PM10), 

and Ozone (O₃). Managing SBS is crucial in hospitals to protect patients with 

chronic health conditions [4]. 
 

Artificial Intelligence (AI), particularly DL, has proven effective for 

IAQ assessment. DL models can capture complex, nonlinear relationships 

among environmental variables, providing robust classification and 

prediction capabilities while addressing imbalanced data issues. This enables 

early detection of patterns that may precede SBS symptoms[5][6][7]. 
 

Forecasting IAQ and associated thermal comfort parameters, such as 

temperature and relative humidity, is critical for preventing SBS and 

ensuring a healthy indoor environment [8]. Accurate predictions enable 

building managers and healthcare staff to implement timely control 

measures, optimize ventilation, and maintain comfortable and safe 

conditions for occupants. By combining IAQ classification with predictive 

modeling, AI-driven systems provide actionable insights that support 

proactive management, reduce health risks, and improve overall building 

performance [9][10]. 
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1.2 Related Work 

In this section, DL approaches for predicting SBS were reviewed, with 

special attention paid to monitoring IAQ, temperature, and relative humidity. 

Poor IAQ in environments such as hospitals, commercial environments, and 

households is usually associated with SBS. Therefore, its prediction can 

benefit from the application of advanced DL techniques. Furthermore, an 

overview of several DL models used in previous studies, highlighting their 

strengths, limitations, and data sources, is provided in Table (1.1). 

 Shi et al. [11], (2018), proposed an improved Backpropagation (BP) 

neural network to predict indoor temperature and humidity in industrial 

environments. The model was trained and validated on real 

environmental data from Chongqing, China, and achieved high accuracy, 

with determination coefficients of 0.9897 for temperature and 0.9778 for 

humidity. These results confirmed the effectiveness of the proposed 

method in enhancing prediction performance and demonstrated its 

potential for maintaining proper environmental conditions in industrial 

applications. 

 Xu et al. [12], (2018), proposed an advanced LSTM model combined 

with an error correction mechanism to enhance indoor temperature 

prediction in public buildings. By applying co-integrated data, the 

modified model addressed the limitations of conventional approaches and 

improved both prediction accuracy and directional reliability. Validation 

showed an increase in R² values ranging from 1% to 9.73% for forecasts 

five minutes ahead, confirming the model’s effectiveness for building 

environment management and its potential to reduce SBS-related issues. 

 Zhao et al. [13], (2018), focused on using DL for forecasting air quality 

classification across three industrial cities in the United States. An RNN 

was applied for air quality forecasting instead of the SVM and RF models, 
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to improve the predictive quality of the time-series air quality data. The 

RNN, which handles sequential data with its memory mechanism, 

improved the prediction performance of the non-memory model by a 

large margin. The results stress the relevance of the DL for air quality 

prediction and how this can also enhance public wellness by helping with 

the mitigation of air pollution. 

 Jin et al. [14], (2019), proposed a DL- based approach for predicting the 

optimum indoor air temperature to achieve thermal comfort in smart 

homes. The study examined the relationship between indoor air 

temperature and occupant comfort using the PMV model and developed 

two DNN architectures: one for regression-based prediction and another 

for classification-based modeling. Validation results showed high 

accuracy, with an average absolute error of about 0.1°C, which was 

sufficient to support automatic air-conditioning control without requiring 

direct user intervention. 

 Parashar and Sonker [15], (2019), focused on the application of DNNs 

for air quality classification, emphasizing the role of hyperparameter 

optimization through Talos to improve model performance. By applying 

the optimized DNN framework to air quality data, the study achieved 

enhanced accuracy and efficiency compared to conventional trial-and-

error model selection. The results confirmed that properly tuned DL 

models can provide effective solutions for monitoring and predicting air 

pollution in response to the global decline in air quality. 

 Elmaz et al. [16], (2021), proposed the CNN-LSTM model to improve 

indoor temperature prediction in HVAC systems. In this approach, the 

convolutional layers were employed for feature extraction, while the 

LSTM component captured temporal dependencies for sequential 

learning. The model was evaluated against MLP and standalone LSTM 



Chapter One                                   General Introduction 

5 
 

architectures under a closed-loop prediction scheme across horizons of 1, 

30, 60, and 120 minutes. Results demonstrated that CNN-LSTM 

consistently outperformed the other models, achieving superior accuracy 

and effectively reducing error accumulation, with R² values exceeding 

0.9 for 120-minute forecasts. 

 Eka et al. [17], (2022), focused on sequence-to-sequence deep learning 

models (LSTM seq2seq and GRU seq2seq) for predicting temperature 

and relative humidity in enclosed buildings such as the Solar Dryer 

Dome. Compared with standard LSTM and GRU models, the seq2seq 

variants achieved lower MAE, with the GRU improving by 0.03013 and 

the LSTM by 0.00941. The results validated the effectiveness of seq2seq 

architectures for environmental prediction, with scope for further 

enhancement through optimization. 

 Hou et al. [18], (2022), proposed a hybrid CNN-LSTM model for hour-

by-hour air temperature prediction. In this approach, CNN was used to 

reduce data dimensionality, while LSTM captured long-term temporal 

dependencies. The model was trained on more than 60,000 

meteorological data points collected over 20 years in Yinchuan, China. 

Results showed that CNN-LSTM outperformed standalone CNN and 

LSTM models, achieving an accuracy of 1.02 and an MSE of 0.7258. 

These findings demonstrated the robustness and effectiveness of the 

hybrid approach in modeling nonlinear relationships and long time-series 

data for temperature prediction. 

 Ozbek et al. [19], (2022), focused on LSTM and ANFIS models enhanced 

with fuzzy c-means (FCM) for forecasting next-day relative humidity 

(RH) across different climatic regions in Turkey. The models were 

trained and tested on meteorological data, with performance evaluated 

using RMSE, MAE, and R² metrics. In Erzurum province, the LSTM 
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achieved an MAE of 5.76%, RMSE of 7.51%, and R² of 0.892, while 

ANFIS achieved an MAE of 5.95%, RMSE of 7.67%, and R² of 0.887. 

The results confirmed the efficiency of both approaches for RH 

prediction, highlighting their value for climatological and environmental 

applications. 

 Bao et al. [20], (2022), suggested the hybrid FL-CNN-LSTM model that 

integrates fuzzy logic with a CNN-LSTM neural network for indoor air 

quality (IAQ) prediction. The model was applied to an indoor PM2.5 

sensor dataset collected in Shanghai between November 2016 and March 

2017, and implemented using the PyTorch framework. Comparative 

analysis against LSTM and CNN-LSTM baselines showed that the 

proposed FL-CNN-LSTM achieved superior accuracy and produced 

more interpretable results. These findings highlighted its potential for 

improving IAQ monitoring and enabling smart IoT-based control 

strategies to promote. 

 Di Già and Papurello [21], (2022), proposed a hybrid model for LSTMs 

indoor temperature forecasting at the Energy Center, Turin. Using HVAC 

data and outdoor temperature, it predicts 2, 5, and 24 hours with high 

accuracy, achieving an average RMSE of 0.1°C across different floors 

and horizons. The study highlights its potential for predictive control, 

energy demand management, and reducing carbon emissions in 

buildings. 

 Marzouk et al. [22], (2022), developed an IoT-based monitoring system 

integrated with deep learning to assess IAQ in academic buildings. Using 

microcontrollers and sensors, it measured temperature, humidity, 

pressure, CO₂, CO, and PM2.5. AI processing enabled efficient data 

handling, achieving reliable prediction accuracy. Average values were 30 

°C, 42% RH, 100,422 Pa, 460 ppm CO₂, 2.2 ppm CO, and 15.3 μg/m³ 



Chapter One                                   General Introduction 

7 
 

PM2.5. The system proved effective in forecasting and managing IAQ, 

enhancing safety and comfort in educational settings. 

 Fernandes and Gonçalves [23], (2023), suggested a bidirectional LSTM 

model for IAQ prediction, focusing on forecasting pollutant levels due to 

their critical impact on public health. The model was applied to short- and 

long-term forecasting tasks, achieving RMSE of 8.703 and MAE of 2.892 

for one-minute predictions, and RMSE of 53.791 and MAE of 16.193 for 

one-hour predictions. The results demonstrated that the bidirectional 

approach outperformed traditional models, confirming its effectiveness 

for accurate IAQ forecasting. 

 E. Gunawan et al. [24], (2023), proposed a DL framework based on 

multivariate time-series data for predicting temperature and relative 

humidity in enclosed environments. The model achieved near-perfect 

accuracy (R² > 0.99) on real datasets, confirming the effectiveness of DL 

methods for environmental prediction and their value in agriculture and 

facility management. 

 Drikakis et al. [25], (2024), focused on DL techniques, specifically an 

LSTM model. The study analyzed the impact of limited and aggregated 

data on LSTM-based temperature and humidity predictions in ventilated 

environments, showing that while forecasts remained reliable, data 

scarcity and airflow dynamics significantly affected accuracy. 

 Zhu et al. [26], (2024), proposed a hybrid CNN-BiLSTM model 

enhanced with Adaptive Particle Swarm Optimization (APSO) for air 

quality prediction. Applied to AQI time-series data from monitoring 

stations in Xi’an, China, the model dynamically optimized 

hyperparameters and achieved superior performance over baseline 

methods, with RMSE of 38.93 and MAE of 29.19. The results confirmed 
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the effectiveness of optimization-based hybrid architectures for spatial-

temporal environmental forecasting. 

 Spyrou et al. [27], (2024), focused on developing a classification tool for 

IAQ management with a focus on explaining ability. The study applied 

k-means clustering and a Random Forest model on a public dataset for 

IAQ classification, added an IAQ Index, and developed a Python web 

tool with SHAP plots to improve interpretability and support IAQ 

management. 

 Kutala et al. [28], (2024), focused on a hybrid DL–based framework for 

air pollution prediction and AQI classification, introducing the BSSO-

HDL model that integrates Binary Spring Search Optimization with 

hybrid DL techniques. The CNN-ELM model with BSSO 

hyperparameter tuning achieved superior air quality prediction during 

COVID-19, outperforming XGBoost, SVM, and RF, with R² = 0.922, 

RMSE = 15.422, and MAE = 10.029. 

 Wang et al. [29], (2024), proposed a lightweight air quality monitoring 

framework using a multiscale dilated CNN designed for mobile and IoT 

edge devices. The model used dilated kernels and multiscale feature 

fusion, reducing parameters by 86.7% and FLOPs by 88.5%, achieving 

94.2% Top-1 accuracy and enabling efficient air quality mapping on 

resource-constrained IoT devices. 
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Table (1.1): Approaches used in previous works. 

No. 
Authors, 
Ref., Year 

Deep learning 
model 

Datasets 
The main 

advantages 
The main 

Disadvantages 

1 
Shi et al. 

[11], 2018 
Improved BP 

Neural Network 

Chongqing 
Cloud Database 

for Industrial 
Data. 

Very accurate 
predictions of 

indoor 
temperature and 
relative humidity 

Poor performance 
for the long-term 
relative humidity 

forecast. 

2 
Xu et al. 

[12],2018 

LSTM + Error 
Correction 

Model 

Indoor 
temperature 

dataset, office 
building, China 

High level of 
accuracy in trend 

and direction 
predictions-D-

stat ~ 98% 

Limitation of the 
size of data; 

fairly better than 
other ML models 

3 
Zhao, X.; 
Zhang, R. 
[13], 2018 

Recurrent Neural 
Network 

Air quality data 
from US EPA 

(CO, NO2, O3, 
SO2, PM2.5, 

PM10) 

Good at 
processing 

sequential data 
with memory 
capabilities, 

superior to SVM 
and Random 

Forest in 
performance 

Limited to 
sequential data 

and may require 
extensive 

historical data for 
optimal 

performance 

4 
Jin et al. 

[14], 2019 

Regression & 
Classification 

Models 

Smart Home 
Benchmark 

Dataset 

High precision 
around 0.13°C 
MAE; it can 

support real-time 
personalized 

control. 

Limited to some 
smart home 
platforms 

5 
Parashar and 
Sonker [15], 

2019 

DNN with 
Hyperparameter 

Optimization 
(Talos) 

Air quality data 
with pollutants 
PM10, PM2.5, 

SO2, NO2 

Hyperparameter 
optimization 
improves the 

prediction 
accuracy and 

handles model 
tuning 

effectively 

Relies on a trial-
and-error 

approach in 
traditional 

methods without 
optimization 

6 
Elmaz et al. 
[16], 2021 

CNN-LSTM 

The dataset 
provided by 
Building Z, 

University of 
Antwerp 

High accuracy in 
the short- and 
medium-term 

forecast: R² > 0.9 

Long-term 
deterioration of 

performance due 
to accumulated 
estimation error 
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7 
Eka et al. 
[17], 2022 

Seq2Seq (LSTM 
and GRU) 

Room Climate 
Dataset 

(273,144 
timestamps) 

Better accuracy 
compared to the 
baseline models 
(MAE: LSTM 

~0.00941, GRU 
~0.03013); 
suitable for 

sequence-to-
sequence tasks. 

The seq2seq 
model overfits; 

better 
hyperparameters 

and pre-
processing are 

needed. 

8 
Hou et al. 
[18], 2022 

CNN-LSTM 

60,133 hourly 
meteorological 

data (air 
temperature, 
dew point, air 
pressure, wind 
direction, wind 

speed, and 
cloud amount) 
from Yinchuan, 
China (2000-

2020) 

High accuracy: 
MAE 1.02 and 

R² 0.7258; 
extracts features 

using a CNN 
with LSTM to 
capture long-
term memory. 

Computationally 
more expensive 
compared to a 
single CNN or 
single LSTM; 
slightly more 

difficult to train 
and fine-tune 

9 
Ozbek et al. 
[19], 2022 

LSTM, ANFIS 
with Fuzzy C-
Means (FCM) 

Daily relative 
humidity data 
(2012-2019) 

from six 
provinces in 

Turkey 

Precise short-
term prediction, 

particularly 
under desertic 

weather 
conditions of 
Diyarbakir; 

LSTM avoids 
the vanishing 

gradient problem 

ANFIS does need 
parameter tuning, 
while LSTM may 

overfit in small 
datasets. 

10 
Bao et al. 
[20], 2022 

FL-CNN-LSTM 

IAQ data - 
CO2, PM10, 
PM2.5, VOC, 
Temperature, 

etc., Shanghai, 
Nov. 2016-
March 2017 

High accuracy 
for multi-step 

IAQ prediction, 
with integration 

of fuzzy logic for 
interpretability. 

Demands 
extensive 

computational 
pre-processing 
and fine-tuning 
of fuzzy logic to 
achieve optimal 

outcomes. 

11 
Di Già and 
Papurello 
[21], 2022 

LSTM Neural 
Network 

Indoor 
temperature and 
HVAC data of 

15 offices in the 

Accurate multi-
horizon 

temperature 
prediction 

Needs heavy 
adaptation; heavy 

architecture 
might cause 
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Energy Center, 
Turin, Italy 

(2019-2020) 

(RMSE ~0.1°C); 
robust for 

various time 
horizons (2h-

24h) 

overfitting if not 
appropriately 
regularized. 

12 

Marzouk, 
M.and  Atef, 

M. [22], 
2022 

DL (IoT 
integration for 

IAQ) 

IAQ data from 
IoT sensors 

Effective in real-
time prediction 
and managing 
IAQ, with low 
disruption in 
data transfer 

Complex system 
design depends 

on IoT 
infrastructure. 

13 

Fernandes 
and 

Gonçalves 
[23], 2023 

Bidirectional 
LSTM 

(BiLSTM) 

IAQ measured 
by GAMS; 

135,099 entries 
ranging from 
CO₂, PM10, 

PM2.5, VOC, 
temperature, 
and humidity. 

Accurate multi-
output 

predictions, at 
8.703 RMSE for 

a 1-minute 
forecast; handle 
multivariate time 

series. 

Struggles with 
extremely high or 

sudden data 
spikes, 

computationally 
heavier than the 

usual LSTM. 

14 
E. Gunawan 
et al. [24], 

2023 

Transformer, 
Transformer 
LPE, LSTM, 

GRU 

Room Climate 
Dataset 

Building 3 

High accuracy of 
prediction: R² > 

0.99. 
Performance 

robustness was 
checked in all 
models using 
multivariate 

inputs. 

Transformer 
models are quite 
computationally 
expensive. Both 
GRU and LSTM 
necessitate tuning 

to avoid 
overfitting. 

15 
Drikakis et 

al. [25], 2024 
LSTM 

High-resolution 
flow simulation 

data of 
temperature, 
velocity, and 

relative 
humidity in a 
rectangular 

room 

High accuracy in 
predicting 

temperature and 
humidity under 

sparse data 
conditions; 

handles long-
term 

dependencies 
effectively 

Reduced 
accuracy with 

high data 
sparsity; requires 

significant 
computational 
resources for 

training. 

16 
Zhu et al. 
[26], 2024 

APSO-CNN-
BiLSTM 

Air Quality & 
Meteorological 

data from 
Xi’an, China 

APSO improves 
hyperparameter 

tuning 
dynamically 
- Combines 
spatial and 

Focused only on 
prediction, not 
classification 

- Requires more 
computation due 



Chapter One                                   General Introduction 

12 
 

temporal 
learning via 

CNN + BiLSTM 
 

to the 
optimization loop 
- No deployment 
interface or real-
time framework 

included 

17 

Spyrou, E. 
D.and 

Kappatos, V. 
[27], 2024 

Random Forest 
with K-means 

Clustering 
(SHAP) 

IAQ dataset 
with k-means 

clustering 

Provides high 
classification 
accuracy and 

explainability via 
SHA 

Limited by data 
availability and 

the need for 
interpretability 
tools for non-

experts 

18 
Kutala et al. 
[28], 2024 

Convolutional 
Neural Network 

with Extreme 
Learning 

Machine (CNN-
ELM) and BSSO 

Air pollution 
data during the 

COVID-19 
lockdown 

Optimized with 
hyperparameter 

tuning to 
improve 

prediction 
performance, 

effective in AQI 
forecasting 

Complex model 
setup with pre-
processing and 
hyperparameter 
optimization can 

be 
computationally 

intensive. 

19 
Wang et al. 
[29], 2024 

Multiscale 
Dilated CNN 

(MDNet) 

GAOs-2 dataset 
(1054 labeled 

air quality 
images) 

Achieves high 
accuracy 

(94.2%) with 
significantly 

reduced 
parameters 

(86.7%) and 
FLOPs (88.5%), 

making it 
suitable for 

mobile and IoT  

Limited 
generalizability 

to other 
geographical 

locations without 
fine-tuning or 

retraining 
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Both Bao et al. (2022) and Elmaz et al. (2021) examine indoor 

environmental prediction using hybrid  DL models. These models combine 

CNNs for spatial feature extraction with LSTMs to capture temporal 

dependencies. Similar to this dissertation, their approaches rely on sensor-

based data and demonstrate superior performance compared to baseline 

models. 

However, the two studies differ in both scope and methodology. Bao 

et al. incorporated fuzzy logic to enhance interpretability and address 

uncertainty in IAQ prediction, utilizing PM2.5 data collected over several 

months in Shanghai. In contrast, Elmaz et al. applied a 1DCNN-LSTM 

framework specifically for short-term indoor temperature forecasting in 

HVAC systems, with a prediction horizon of up to 120 minutes. 

This dissertation extends beyond both works by targeting multiple 

IAQ variables (CO₂, PM2.5, temperature, humidity) in healthcare and 

educational buildings. It focuses on long-term forecasting and system 

optimization for the practical management of SBS. 

1.3 Problem Statement 

The rapid growth of modern construction in Iraq, influenced by 

climatic factors and weak architectural design with poor ventilation, has 

intensified IAQ challenges and the risk of SBS, particularly in healthcare 

facilities. However, datasets related to SBS in Iraq are scarce, inconsistent, 

and non-standardized, reducing the reliability of DL models [30]. 

 Existing monitoring practices still rely on manual inspections and 

surveys, which are slow, error-prone, and lack real-time responsiveness. The 

absence of automated AI- and IoT-based systems further delays corrective 

action and increases health risks [31].  
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DL models also require high computational resources, making large-

scale deployment difficult in resource-limited settings such as Iraq [32]. 

Although lightweight models and optimization techniques offer promising 

alternatives, infrastructure constraints, including limited sensor networks, 

unstable connectivity, and outdated monitoring systems, still hinder effective 

IAQ management, with reports confirming insufficient monitoring coverage 

nationwide [33].  

Poor IAQ is directly linked to respiratory diseases, cognitive decline, 

and reduced workplace performance. In healthcare environments, inadequate 

ventilation and elevated pollutants exacerbate airborne disease transmission. 

Recent studies have shown pollutant concentrations exceeding WHO 

standards, underscoring the urgent need for AI-driven predictive systems to 

protect health and improve IAQ management in Iraq [34]. 

1.4 Aim and Objectives of the Dissertation 

The primary aim of this dissertation is to design an optimized DL 

framework for the detection of SBS and the prediction of environmental 

conditions in healthcare settings, To achieve this aim, the following objectives 

were pursued: 

1. Create a novel IAQ dataset by developing a custom Arduino-based 

monitoring system integrating multiple sensors (CO₂, TVOC, PM2.5, 

PM10, CO, O₃, AQ, LDR, temperature, and relative humidity). The 

dataset was continuously collected for eight months from hospital wards, 

providing the first structured SBS-related dataset in Iraq. 

2. Applying preprocessing and data preparation steps to ensure it is ready 

for classification and forecasting tasks. 
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3. Apply advanced deep learning methods (e.g., DNN, LSTM, and hybrid 

1D-CNN-BiLSTM) for SBS detection and environmental prediction, 

optimized with NAS, PL, and SVD to enhance efficiency and accuracy. 

4. Build forecasting models for key IAQ parameters, particularly 

temperature and relative humidity, using the proposed DL framework. 

5. Evaluate the performance of the proposed models using standard 

classification and regression metrics, including accuracy, precision, 

recall, F1-score, and computational efficiency. 

1.5 Contribution 

This dissertation aims to advance IAQ monitoring and environmental 

condition prediction in healthcare facilities, with Baqubah Teaching Hospital 

in Iraq as the case study. The research focuses on improving IAQ 

classification and forecasting of key parameters, particularly temperature 

and relative humidity, through the development of a predictive DL 

framework. By combining IAQ assessments with short-term environmental 

predictions, the study supports both occupant health and the effective 

functioning of healthcare environments. The main contributions of this 

dissertation are as follows: 

1. New Dataset Creation: Developed the first structured IAQ dataset in 

Iraq (523,524 samples) using a custom Arduino-based multi-sensor 

system, continuously collected from male and female wards. 

2. Building DL Model: Built and benchmarked DL models for IAQ 

classification and forecasting of temperature and humidity (up to 60 

minutes ahead) using a sliding window approach, with the hybrid 1D-

CNN-BiLSTM achieving superior performance. 

3. Optimization: Applied three optimization techniques (NAS, PL, and 

SVD/LRF) to reduce model complexity and inference time while 
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maintaining high predictive accuracy (classification accuracy up to 

94.8%, R² > 0.99 for forecasting). 

4. Integration & Practical Impact: Integrated IAQ methods with AI-

driven analytics to support early SBS detection and proactive 

environmental management, providing a lightweight and efficient 

framework for real-world deployment in healthcare facilities. 
 

1.6 Scope and Limitation 

1.6.1 Stady scope 
The primary objective of this dissertation is to develop a deep learning 

model capable of detecting SBS through the classification of IAQ. The 

model is trained on real environmental data collected from Baqubah 

Teaching Hospital in Iraq. The research focuses on employing a hybrid 1D-

CNN-BiLSTM architecture, optimized using NAS, PL, and LRF. 

Furthermore, the scope of this work includes the development of an 

integrated system with an interactive GUI designed to display classification 

results and provide health-related recommendations, enabling practical 

deployment in healthcare environments. 
 

1.6.2 Stady Limitations 
Despite the significant contributions of this work, several limitations 

should be acknowledged. First, the dataset was collected from a single case 

study (Baqubah Teaching Hospital), which may limit the generalizability of 

the findings to other healthcare settings or geographic regions. In addition, 

environmental conditions were measured only in selected wards (male and 

female), not across all hospital departments. The forecasting framework was 

restricted to short-term predictions (up to 60 minutes ahead) and was limited 

to temperature and humidity rather than the full set of IAQ parameters. To 

address class imbalance, duplication-based oversampling was applied, which 
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may not fully capture the complexity of real-world IAQ variations. Finally, 

the hardware implementation was based on Arduino Mega, which may 

present scalability challenges when applied to larger or more complex 

systems. 
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1.7 Dissertation Structure 

The dissertation is structured in five chapters; here, a brief description 

of their contents is given: 

Chapter two: Presents the theoretical background for the utilized techniques 

to classify IAQ and prediction by temperature and Relative Humidity, as well 

as the advantages and disadvantages of using each type of these techniques. 

Chapter Three: Illustrate the methodology of the proposed models. 

Chapter Four: Describes the experiments that are conducted to evaluate the 

proposed systems and validate the hypothesis of this work, in addition to the 

results collected from these experiments. 

Chapter Five: Discusses results, conclusions, and lists some suggestions for 

future studies 

 

 

 

 

 

 


