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ABSTRACT

The integration of information technology into civil engineering
represents a significant advancement in the intelligent monitoring and
control of built environments, thereby enhancing safety, efficiency, and user
comfort. A crucial aspect of this integration is indoor air quality (IAQ),
which has a significant impact on human health. Poor IAQ, particularly in
hospitals, can lead to sick building syndrome (SBS), resulting in symptoms
such as headaches, fatigue, and cognitive impairment.

This dissertation propose a deep learning (DL) framework for SBS,
combining indoor air quality classification with environmental condition
prediction. The system was designed to work with real data from
environmental sensors collected over a year at Baqubah Teaching Hospital,
comprising over 523,524 samples with ten key features. The hybrid 1D-
CNN-BiLSTM model achieved the highest classification accuracy of 94.8%.
The model was further optimized using a multi-stage framework. While
these improvements reduced accuracy to 92%, they significantly improved
computational efficiency; inference time decreased from 20.8 seconds to
0.66 seconds, and file size decreased from 5.17 MB to 1.72 MB.

In addition to classification, the model was also used to predict
thermal comfort indicators, specifically temperature and relative humidity.
Utilizing a sliding window of 120 time steps, the model effectively predicted
environmental conditions for the next 60 minutes, achieving R? exceeding
0.99 for both variables. This confirms its robustness and reliability in

environmental predictions.
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Chapter One

General Introduction
1.1 Introduction

Human efforts have continuously aimed to improve living standards,
evolving from basic shelters to technologically advanced buildings that
provide safety, comfort, and energy efficiency. However, these
advancements introduce new challenges related to maintaining 1AQ. As
modern societies spend a significant portion of their time indoors, whether
at home, in offices, or in healthcare facilities, the IAQ has become a critical
factor for health and well-being. Poor IAQ has been linked to a wide range
of adverse health outcomes, including respiratory problems, cognitive

impairments, general discomfort, and reduced productivity [1].

The issue of IAQ is particularly critical in healthcare settings, such as
hospitals, where vulnerable patients and healthcare workers are exposed to
complex indoor environments. High occupancy rates, frequent human
activity, and the presence of sensitive individuals increase the risk of
exposure to airborne pollutants and infectious agents [2]. According to the
World Health Organization (WHO), poor TAQ contributes to nearly 3.2
million deaths each year, underlining the global need for effective

monitoring, management, and mitigation strategies to protect public health

13].

SBS is a major concern associated with poor IAQ, causing symptoms
such as headaches, fatigue, eye irritation, and respiratory issues, which often
subside when individuals leave the affected environment. These symptoms
are linked to low ventilation, temperature and humidity fluctuations, and

high concentrations of pollutants including Carbon Dioxide (CO-), Total
1
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Volatile Organic Compounds (TVOCs), particulate matter (PM2.5, PM10),
and Ozone (Os). Managing SBS is crucial in hospitals to protect patients with

chronic health conditions [4].

Artificial Intelligence (Al), particularly DL, has proven effective for
[AQ assessment. DL models can capture complex, nonlinear relationships
among environmental variables, providing robust -classification and
prediction capabilities while addressing imbalanced data issues. This enables

early detection of patterns that may precede SBS symptoms[5][6][7].

Forecasting IAQ and associated thermal comfort parameters, such as
temperature and relative humidity, is critical for preventing SBS and
ensuring a healthy indoor environment [8]. Accurate predictions enable
building managers and healthcare staff to implement timely control
measures, optimize ventilation, and maintain comfortable and safe
conditions for occupants. By combining [AQ classification with predictive
modeling, Al-driven systems provide actionable insights that support
proactive management, reduce health risks, and improve overall building

performance [9][10].
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1.2 Related Work

In this section, DL approaches for predicting SBS were reviewed, with
special attention paid to monitoring IAQ, temperature, and relative humidity.
Poor TAQ in environments such as hospitals, commercial environments, and
households is usually associated with SBS. Therefore, its prediction can
benefit from the application of advanced DL techniques. Furthermore, an
overview of several DL models used in previous studies, highlighting their
strengths, limitations, and data sources, is provided in Table (1.1).

e Shi et al. [11], (2018), proposed an improved Backpropagation (BP)
neural network to predict indoor temperature and humidity in industrial
environments. The model was trained and validated on real
environmental data from Chongqing, China, and achieved high accuracy,
with determination coefficients of 0.9897 for temperature and 0.9778 for
humidity. These results confirmed the effectiveness of the proposed
method in enhancing prediction performance and demonstrated its
potential for maintaining proper environmental conditions in industrial
applications.

e Xu et al. [12], (2018), proposed an advanced LSTM model combined
with an error correction mechanism to enhance indoor temperature
prediction in public buildings. By applying co-integrated data, the
modified model addressed the limitations of conventional approaches and
improved both prediction accuracy and directional reliability. Validation
showed an increase in R? values ranging from 1% to 9.73% for forecasts
five minutes ahead, confirming the model’s effectiveness for building
environment management and its potential to reduce SBS-related issues.

e Zhao et al. [13], (2018), focused on using DL for forecasting air quality
classification across three industrial cities in the United States. An RNN

was applied for air quality forecasting instead of the SVM and RF models,
3
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to improve the predictive quality of the time-series air quality data. The
RNN, which handles sequential data with its memory mechanism,
improved the prediction performance of the non-memory model by a
large margin. The results stress the relevance of the DL for air quality
prediction and how this can also enhance public wellness by helping with
the mitigation of air pollution.

e Jinetal. [14], (2019), proposed a DL-based approach for predicting the
optimum indoor air temperature to achieve thermal comfort in smart
homes. The study examined the relationship between indoor air
temperature and occupant comfort using the PMV model and developed
two DNN architectures: one for regression-based prediction and another
for classification-based modeling. Validation results showed high
accuracy, with an average absolute error of about 0.1°C, which was
sufficient to support automatic air-conditioning control without requiring
direct user intervention.

e Parashar and Sonker [15], (2019), focused on the application of DNNs
for air quality classification, emphasizing the role of hyperparameter
optimization through Talos to improve model performance. By applying
the optimized DNN framework to air quality data, the study achieved
enhanced accuracy and efficiency compared to conventional trial-and-
error model selection. The results confirmed that properly tuned DL
models can provide effective solutions for monitoring and predicting air
pollution in response to the global decline in air quality.

e Elmaz et al. [16], (2021), proposed the CNN-LSTM model to improve
indoor temperature prediction in HVAC systems. In this approach, the
convolutional layers were employed for feature extraction, while the
LSTM component captured temporal dependencies for sequential

learning. The model was evaluated against MLP and standalone LSTM
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architectures under a closed-loop prediction scheme across horizons of 1,
30, 60, and 120 minutes. Results demonstrated that CNN-LSTM
consistently outperformed the other models, achieving superior accuracy
and effectively reducing error accumulation, with R? values exceeding
0.9 for 120-minute forecasts.

e Eka et al. [17], (2022), focused on sequence-to-sequence deep learning
models (LSTM seq2seq and GRU seq2seq) for predicting temperature
and relative humidity in enclosed buildings such as the Solar Dryer
Dome. Compared with standard LSTM and GRU models, the seq2seq
variants achieved lower MAE, with the GRU improving by 0.03013 and
the LSTM by 0.00941. The results validated the effectiveness of seq2seq
architectures for environmental prediction, with scope for further
enhancement through optimization.

e Hou et al. [18], (2022), proposed a hybrid CNN-LSTM model for hour-
by-hour air temperature prediction. In this approach, CNN was used to
reduce data dimensionality, while LSTM captured long-term temporal
dependencies. The model was trained on more than 60,000
meteorological data points collected over 20 years in Yinchuan, China.
Results showed that CNN-LSTM outperformed standalone CNN and
LSTM models, achieving an accuracy of 1.02 and an MSE of 0.7258.
These findings demonstrated the robustness and effectiveness of the
hybrid approach in modeling nonlinear relationships and long time-series
data for temperature prediction.

e Ozbeketal.[19], (2022), focused on LSTM and ANFIS models enhanced
with fuzzy c-means (FCM) for forecasting next-day relative humidity
(RH) across different climatic regions in Turkey. The models were
trained and tested on meteorological data, with performance evaluated

using RMSE, MAE, and R? metrics. In Erzurum province, the LSTM
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achieved an MAE of 5.76%, RMSE of 7.51%, and R? of 0.892, while
ANFIS achieved an MAE of 5.95%, RMSE of 7.67%, and R? of 0.887.
The results confirmed the efficiency of both approaches for RH
prediction, highlighting their value for climatological and environmental
applications.

e Bao et al. [20], (2022), suggested the hybrid FL-CNN-LSTM model that
integrates fuzzy logic with a CNN-LSTM neural network for indoor air
quality (IAQ) prediction. The model was applied to an indoor PM2.5
sensor dataset collected in Shanghai between November 2016 and March
2017, and implemented using the PyTorch framework. Comparative
analysis against LSTM and CNN-LSTM baselines showed that the
proposed FL-CNN-LSTM achieved superior accuracy and produced
more interpretable results. These findings highlighted its potential for
improving IAQ monitoring and enabling smart IoT-based control
strategies to promote.

e Di Gia and Papurello [21], (2022), proposed a hybrid model for LSTMs
indoor temperature forecasting at the Energy Center, Turin. Using HVAC
data and outdoor temperature, it predicts 2, 5, and 24 hours with high
accuracy, achieving an average RMSE of 0.1°C across different floors
and horizons. The study highlights its potential for predictive control,
energy demand management, and reducing carbon emissions in
buildings.

e Marzouk et al. [22], (2022), developed an IoT-based monitoring system
integrated with deep learning to assess IAQ in academic buildings. Using
microcontrollers and sensors, it measured temperature, humidity,
pressure, CO2, CO, and PM2.5. Al processing enabled efficient data
handling, achieving reliable prediction accuracy. Average values were 30

°C, 42% RH, 100,422 Pa, 460 ppm CO2, 2.2 ppm CO, and 15.3 pg/m?
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PM2.5. The system proved effective in forecasting and managing 1AQ,
enhancing safety and comfort in educational settings.

e Fernandes and Gongalves [23], (2023), suggested a bidirectional LSTM
model for IAQ prediction, focusing on forecasting pollutant levels due to
their critical impact on public health. The model was applied to short- and
long-term forecasting tasks, achieving RMSE 0f 8.703 and MAE 0f2.892
for one-minute predictions, and RMSE of 53.791 and MAE of 16.193 for
one-hour predictions. The results demonstrated that the bidirectional
approach outperformed traditional models, confirming its effectiveness
for accurate IAQ forecasting.

e E. Gunawan et al. [24], (2023), proposed a DL framework based on
multivariate time-series data for predicting temperature and relative
humidity in enclosed environments. The model achieved near-perfect
accuracy (R*> 0.99) on real datasets, confirming the effectiveness of DL
methods for environmental prediction and their value in agriculture and
facility management.

e Drikakis et al. [25], (2024), focused on DL techniques, specifically an
LSTM model. The study analyzed the impact of limited and aggregated
data on LSTM-based temperature and humidity predictions in ventilated
environments, showing that while forecasts remained reliable, data
scarcity and airflow dynamics significantly affected accuracy.

e Zhu et al. [26], (2024), proposed a hybrid CNN-BiLSTM model
enhanced with Adaptive Particle Swarm Optimization (APSO) for air
quality prediction. Applied to AQI time-series data from monitoring
stations in Xi’an, China, the model dynamically optimized
hyperparameters and achieved superior performance over baseline

methods, with RMSE of 38.93 and MAE of 29.19. The results confirmed
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the effectiveness of optimization-based hybrid architectures for spatial-
temporal environmental forecasting.

e Spyrou et al. [27], (2024), focused on developing a classification tool for
IAQ management with a focus on explaining ability. The study applied
k-means clustering and a Random Forest model on a public dataset for
IAQ classification, added an TAQ Index, and developed a Python web
tool with SHAP plots to improve interpretability and support TAQ
management.

e Kutala et al. [28], (2024), focused on a hybrid DL-based framework for
air pollution prediction and AQI classification, introducing the BSSO-
HDL model that integrates Binary Spring Search Optimization with
hybrid DL techniques. The CNN-ELM model with BSSO
hyperparameter tuning achieved superior air quality prediction during
COVID-19, outperforming XGBoost, SVM, and RF, with R* = 0.922,
RMSE = 15.422, and MAE = 10.029.

e Wang et al. [29], (2024), proposed a lightweight air quality monitoring
framework using a multiscale dilated CNN designed for mobile and IoT
edge devices. The model used dilated kernels and multiscale feature
fusion, reducing parameters by 86.7% and FLOPs by 88.5%, achieving
94.2% Top-1 accuracy and enabling efficient air quality mapping on

resource-constrained IoT devices.
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Table (1.1): Approaches used in previous works.

Authors, | Deep learning The main The main
No. Datasets .
Ref., Year model advantages Disadvantages
. Ve t
Chongqing :;gi:;girsao?f Poor performance
1 Shi et al. Improved BP |Cloud Database P indoor for the long-term
[11],2018 |Neural Network | for Industrial relative humidity
temperature and
Data. . 1 forecast.
relative humidity
Indoor High leyel of Limitation of the
LSTM + Error accuracy in trend .
Xu et al. . temperature L size of data;
2 Correction and direction .
[12],2018 dataset, office .. fairly better than
Model e . predictions-D-
building, China other ML models
stat ~ 98%
Good at
processing Limited to
Air quality data| sequential data | sequential data
Zhao, X.; Recurrent Neural from US EPA | with m.e'n?ory and may r.equlre
3 | Zhang, R. Network (CO, NO2, O3,| capabilities, extensive
[13], 2018 SO2, PM2.5, |superior to SVM |historical data for
PM10) and Random optimal
Forest in performance
performance
High precision
) d0.13°C | . .
. Regression & | Smart Home aroun . Limited to some
Jin et al. . . MAE; it can
4 Classification Benchmark . smart home
[14], 2019 support real-time
Models Dataset ) platforms
personalized
control.
Hyperparameter
optimization | Relies on a trial-
DNN with  |Air quality data| improves the and-error
Parashar and . . .
5 | Sonker [15] Hyperparameter | with pollutants prediction approach in
2019 | Optimization |PM10, PM2.5, | accuracy and traditional
(Talos) S0O2, NO2 handles model | methods without
tuning optimization
effectively
The dataset . . Long-term
. High accuracy in N
Elmaz et al provided by the short. and deterioration of
6 "| CNN-LSTM Building Z, . performance due
[16], 2021 . . medium-term
University of to accumulated
forecast: R*>0.9] . .
Antwerp estimation error
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Better accuracy
compared to the | The seq2seq
Room Climate baseline models | model overfits;
(MAE: LSTM better
- Ekaet al. |Seq2Seq (LSTM Dataset 0.00941, GRU | hyperparameters
17], 2022 d GRU 273,144 ’ ’
7). an ) @73, ~0.03013); and pre-
timestamps) ) .
suitable for processing are
sequence-to- needed.
sequence tasks.
60,133 hourly
meteorological
data (air High accuracy: | Computationally
temperature, | MAE 1.02 and | more expensive
dew point, air R?0.7258; compared to a
8 Hou et al. CNN-LSTM p.ressgre, w1.nd extr?lcts features s1.ng1e CNN or
[18], 2022 direction, wind | using a CNN single LSTM;
speed, and with LSTM to | slightly more
cloud amount) | capture long- | difficult to train
from Yinchuan,| term memory. and fine-tune
China (2000-
2020)
Precise short-
term prediction,
Daily relative particularly
o . |ANFIS does need
humidity data | under desertic .
LSTM, ANFIS parameter tuning,
Ozbek et al. . (2012-2019) weather .
9 with Fuzzy C- . o while LSTM may
[19], 2022 from six conditions of .
Means (FCM) . . . . overfit in small
provinces in Diyarbakir; datasets
Turkey LSTM avoids ’
the vanishing
gradient problem
D d
IAQ data - High accurac exizlasrilvz
€02, PM10, fo{rg multi stey computational
Bao et al PM2.5, VOC, TIAQ ;ledictiolil re prucl>cessin
10 " |FL-CNN-LSTM | Temperature, | > Procction, | pre-processing
[20], 2022 . | with integration | and fine-tuning
etc., Shanghai, . .
of fuzzy logic for| of fuzzy logic to
Nov. 2016- interpretability. | achieve optimal
March 2017 P Y Ve op
outcomes.
I A Iti- h
Di Gia and ndoor ccurat.e multi Need.s eavy
LSTM Neural |temperature and horizon adaptation; heavy
11 | Papurello .
Network HVAC data of | temperature architecture
[21], 2022 . . .
15 offices in the|  prediction might cause
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Energy Center,
Turin, Italy
(2019-2020)

(RMSE ~0.1°C);
robust for
various time

horizons (2h-
24h)

overfitting if not
appropriately
regularized.

Effective in real-

Marzouk, DL (IoT time prediction | Complex system
D M.and Atef, inteeration for IAQ data from | and managing | design depends
M. [22], gI AQ) IoT sensors | 1AQ, with low on loT
2022 disruption in infrastructure.
data transfer
IAQ measured | Accurate multi- Struggles with
by GAMS; output .
. o extremely high or
Fernandes e 135,099 entries | predictions, at
Bidirectional . sudden data
13 and LSTM ranging from |8.703 RMSE for spikes
Gongalves (BILSTM) CO., PM10, a 1-minute com Etatic;nall
[23], 2023 PM2.5, VOC, | forecast; handle | <™ Y
temperature, |multivariate time heavier than the
perarire, . usual LSTM.
and humidity. series.
T
igh .ac.curacy of Transformer
prediction: R* > :
0.99 models are quite
Transf o tationall
E. Gunawan ransiotieh, | poom Climate | Performance | <00 PV 'a lonaty
14 | etal. [24] Transformer Dataset robustness was | _ PV e Both
=M LPE, LSTM, o USINESS WAS | GRU and LSTM
2023 Building 3 checked in all . .
GRU . necessitate tuning
models using .
. to avoid
multivariate .
. overfitting.
mputs.
High i
High-resolution ' acc.:ur.acy .
. . predicting Reduced
flow simulation .
temperature and | accuracy with
data of L .
humidity under high data
Drikakis et temperature, sparse data | sparsity; requires
1 LST™M locit d . ]
S al. [25], 2024 veloel }./’ an conditions; significant
relative .
e handles long- | computational
humidity in a
term resources for
rectangular . .
dependencies training.
room :
effectively
i i APSO improves Focused only on
Air Quality & | hyperparameter dicti Y
16 Zhu et al. APSO-CNN- | Meteorological tuning prle 1c.?on,-not
[26], 2024 BiLSTM data from dynamically classt cation
) ) . - Requires more
Xi’an, China - Combines

computation due

spatial and
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temporal to the
learning via  |optimization loop
CNN + BiLSTM| - No deployment
interface or real-
time framework
included
imi
Provides high | - mited by data
Spyrou, E. | Random Forest . . availability and
. IAQ dataset classification
D.and with K-means . the need for
17 . with k-means | accuracy and | . e
Kappatos, V.|  Clustering clusterin explainability via interpretability
[27], 2024 (SHAP) S YV 00l for non-
SHA
experts
Optimized with | Complex model
Convolutional hyperparameter | setup with pre-
Neural Network | Air pollution tuning to processing and
18 Kutala et al. | with Extreme | data during the improve hyperparameter
[28], 2024 Learning COVID-19 prediction optimization can
Machine (CNN-| lockdown performance, be
ELM) and BSSO effective in AQI | computationally
forecasting intensive.
Achieves high
accuracy
(94.2%) with Limited
. GAOs.2 dataset significantly | generalizability
Multiscale reduced to other
Wang et al. . (1054 labeled .
19 291, 2024 Dilated CNN air qualit parameters geographical
’ (MDNet) imczli es)y (86.7%) and |locations without
g FLOPs (88.5%),| fine-tuning or
making it retraining
suitable for
mobile and [oT
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Both Bao et al. (2022) and Elmaz et al. (2021) examine indoor
environmental prediction using hybrid DL models. These models combine
CNNs for spatial feature extraction with LSTMs to capture temporal
dependencies. Similar to this dissertation, their approaches rely on sensor-
based data and demonstrate superior performance compared to baseline

models.

However, the two studies differ in both scope and methodology. Bao
et al. incorporated fuzzy logic to enhance interpretability and address
uncertainty in IAQ prediction, utilizing PM2.5 data collected over several
months in Shanghai. In contrast, Elmaz et al. applied a 1DCNN-LSTM
framework specifically for short-term indoor temperature forecasting in

HVAC systems, with a prediction horizon of up to 120 minutes.

This dissertation extends beyond both works by targeting multiple
IAQ variables (CO., PM2.5, temperature, humidity) in healthcare and
educational buildings. It focuses on long-term forecasting and system

optimization for the practical management of SBS.
1.3 Problem Statement

The rapid growth of modern construction in Iraq, influenced by
climatic factors and weak architectural design with poor ventilation, has
intensified IAQ challenges and the risk of SBS, particularly in healthcare
facilities. However, datasets related to SBS in Iraq are scarce, inconsistent,

and non-standardized, reducing the reliability of DL models [30].

Existing monitoring practices still rely on manual inspections and
surveys, which are slow, error-prone, and lack real-time responsiveness. The
absence of automated Al- and IoT-based systems further delays corrective

action and increases health risks [31].
13
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DL models also require high computational resources, making large-
scale deployment difficult in resource-limited settings such as Iraq [32].
Although lightweight models and optimization techniques offer promising
alternatives, infrastructure constraints, including limited sensor networks,
unstable connectivity, and outdated monitoring systems, still hinder effective
[IAQ management, with reports confirming insufficient monitoring coverage

nationwide [33].

Poor TAQ is directly linked to respiratory diseases, cognitive decline,
and reduced workplace performance. In healthcare environments, inadequate
ventilation and elevated pollutants exacerbate airborne disease transmission.
Recent studies have shown pollutant concentrations exceeding WHO
standards, underscoring the urgent need for Al-driven predictive systems to

protect health and improve IAQ management in Iraq [34].

1.4 Aim and Objectives of the Dissertation

The primary aim of this dissertation is to design an optimized DL
framework for the detection of SBS and the prediction of environmental
conditions in healthcare settings, To achieve this aim, the following objectives

were pursued:

1. Create a novel IAQ dataset by developing a custom Arduino-based
monitoring system integrating multiple sensors (CO., TVOC, PM2.5,
PM10, CO, Os, AQ, LDR, temperature, and relative humidity). The
dataset was continuously collected for eight months from hospital wards,
providing the first structured SBS-related dataset in Iraq.

2. Applying preprocessing and data preparation steps to ensure it is ready

for classification and forecasting tasks.

14
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3. Apply advanced deep learning methods (e.g., DNN, LSTM, and hybrid
ID-CNN-BiLSTM) for SBS detection and environmental prediction,
optimized with NAS, PL, and SVD to enhance efficiency and accuracy.

4. Build forecasting models for key IAQ parameters, particularly
temperature and relative humidity, using the proposed DL framework.

5. Evaluate the performance of the proposed models using standard
classification and regression metrics, including accuracy, precision,

recall, F1-score, and computational efficiency.

1.5 Contribution

This dissertation aims to advance IAQ monitoring and environmental
condition prediction in healthcare facilities, with Baqubah Teaching Hospital
in Iraq as the case study. The research focuses on improving TAQ
classification and forecasting of key parameters, particularly temperature
and relative humidity, through the development of a predictive DL
framework. By combining IAQ assessments with short-term environmental
predictions, the study supports both occupant health and the effective
functioning of healthcare environments. The main contributions of this
dissertation are as follows:

1. New Dataset Creation: Developed the first structured IAQ dataset in
Iraq (523,524 samples) using a custom Arduino-based multi-sensor
system, continuously collected from male and female wards.

2. Building DL Model: Built and benchmarked DL models for TAQ
classification and forecasting of temperature and humidity (up to 60
minutes ahead) using a sliding window approach, with the hybrid 1D-
CNN-BiLSTM achieving superior performance.

3. Optimization: Applied three optimization techniques (NAS, PL, and

SVD/LRF) to reduce model complexity and inference time while

15
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maintaining high predictive accuracy (classification accuracy up to
94.8%, R* > 0.99 for forecasting).

4. Integration & Practical Impact: Integrated IAQ methods with Al-
driven analytics to support early SBS detection and proactive
environmental management, providing a lightweight and efficient

framework for real-world deployment in healthcare facilities.

1.6 Scope and Limitation

1.6.1 Stady scope

The primary objective of this dissertation is to develop a deep learning
model capable of detecting SBS through the classification of IAQ. The
model is trained on real environmental data collected from Baqubah
Teaching Hospital in Iraq. The research focuses on employing a hybrid 1D-
CNN-BIiLSTM architecture, optimized using NAS, PL, and LRF.
Furthermore, the scope of this work includes the development of an
integrated system with an interactive GUI designed to display classification
results and provide health-related recommendations, enabling practical

deployment in healthcare environments.

1.6.2 Stady Limitations

Despite the significant contributions of this work, several limitations
should be acknowledged. First, the dataset was collected from a single case
study (Baqubah Teaching Hospital), which may limit the generalizability of
the findings to other healthcare settings or geographic regions. In addition,
environmental conditions were measured only in selected wards (male and
female), not across all hospital departments. The forecasting framework was
restricted to short-term predictions (up to 60 minutes ahead) and was limited
to temperature and humidity rather than the full set of [AQ parameters. To

address class imbalance, duplication-based oversampling was applied, which
16
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may not fully capture the complexity of real-world IAQ variations. Finally,
the hardware implementation was based on Arduino Mega, which may

present scalability challenges when applied to larger or more complex

systems.

17
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1.7 Dissertation Structure

The dissertation is structured in five chapters; here, a brief description

of their contents is given:

Chapter two: Presents the theoretical background for the utilized techniques
to classify IAQ and prediction by temperature and Relative Humidity, as well

as the advantages and disadvantages of using each type of these techniques.
Chapter Three: Illustrate the methodology of the proposed models.

Chapter Four: Describes the experiments that are conducted to evaluate the
proposed systems and validate the hypothesis of this work, in addition to the

results collected from these experiments.

Chapter Five: Discusses results, conclusions, and lists some suggestions for

future studies
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