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كيمياء استناداً لما تقدم من دراسة الخواص الكتلية للمادة في ال•

الخ ...الحركية وتغيرات الطور

ده فألان يمكن أن ندرس خواص الذرات والجزيئات كُلٍ على ح•
سام فأنه بإمكاننا دراسة حركة الأج. من خلال نظرة ميكانيك الكم

المتحركة في مسارات معينة ضمن قوى مؤثرة فيها وكذلك 
سكون يمكن التأثير عليها ويمكن   جعل الحركة تصل الى حالة ال

.وكذلك يمكن وصف حالة الطاقة لها في اي لحظة

و ما إن القوانين المستخدمة في هذه الحالة هي قوانين نيوتن أ•
خدم خلال وكانت تلك القوانين تست. تدعى بالميكانيك التقليدي

ت إلا إن تراكم النتائج المختبرية أظهر. بداية القرن الماضي
رة جداً فشل تلك القوانين عند تطبيقها على الجسيمات الصغي

إلى 1926إلا إن هذه المفاهيم بقيت مستخدمة حتى . كالذرات
.أن تم اكتشاف ما يدعى بميكانيك الكم
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I . بعض الأفكار الأساسية: الميكانيك التقليدي:

Classical mechanics: some central ideas
:إن طريقة وصف الميكانيك التقليدي لأي نظام يمكن إيجادها بمعادلتين•

إحدى المعادلات تعبّر عن الطاقة الكلية للجسيمة بشروط طاقتها الحركيةّ* •

1.   Kinetic Energy α 1/2 mѵ2   

كتلتها m و تمثل سرعتها في تلك اللحظة الزمنية υ

2. potential Energy  (V)      *         والأخرى طاقة الجهد

:عند ذلك الموقع للجسيمة

Etotal= ½m𝓿2 + V   ;   x and  𝓿 are functions of  t.

.هما دالتان للزمن𝓋و xحيث ان   
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ي؛ إذ وبشروط الزخم الخط)فأنه يمكن تمثيل التعبير أعلاه •

:يليكما (  𝓿m=pأن  

•Etotal =  p2/2m + V   …………………………    (1)
:إن هذه المعادلة يمكن أن تستخدم بعدة طرق؛ فمثلاً بما إن •

p = m ( dx /dt )
الضبط إن المسارات التي ستسلكها الجسيمة بالإمكان استنتاجها ب: ونشير هنا•

.إذا عرفنا موقعها و زخمها 

(  والزخم)وحلها يعطي الموقع ( t) كدالة للزمن ( x) وهي معادلة تفاضلية لـ •
.للجسيمة ؛ كـدالتان للزمن

.بمسار الجسيمةp(t)و x(t)وكتعبير رياضي فأننا ندعوهما•

الإمكان   يصبح ب, هنا فأن المسارات التي ستسلكها الجسيمة •
.استنتاجها بالضبط إذا عرفنا موقعها و زخمها
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وعليه, وان ابسط مثال لهذه الطريقة هي حالة الهيئة الموحدة والجهد الثابت لحل المعادلة*•

(.t) والزمن ( x) يكون مستقل عن الإزاحة  (  V)فأن الجهد 

,مساويا إلى الصفر لغرض التبسيط Vثم من جعل الجهد •

:فالمعادلة تصبح•

E=  p2/2m or  ( 2E/m)2 =  dx/dt
:فسيكون الحل هو 

x(t) = x(0) + (2E/m)½ t
وعليه فأن المسار p(0)الزخم الابتدائي يمكن التعبير عنها بشروط Eفالطاقة المستمرة 

:سيكون

x(t)=x(0) + p(0)t/m ;  p(t) = p(0)     ………..(2)

زخوم وهنا ، وبمعرفة الموقع الابتدائي والزخم فأنه يمكن تحديد المواقع وال
.الأخرى المتوقعة للجسيمة
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ي هي والمعادلة الأساسية الثانية في الميكانيك التقليد*•

:قانون نيوتن الثاني في الحركة

وتمثل معدل التغيّر في الزخم  حيث إن •

p=m(d2x/dt2والذي يتناسب طردياً مع التعجيل   )

.تمثل القوة المؤثرة على الجسيمةFو •

ونفس الشئ إذا عرفنا القوة المؤثرة في موقع وبأي زمن فانه 
.يمكن حل تلك المعادلة ومن ثم ايجاد المسار 
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وقد سمح لها بالحركة بحرية تامة τولزمن   Fفلنتصور لدينا جسيمة متعرضة لقوة ثابتة  •

:ستصبحمعادلة نيوتنفأن  

t=τ).و t=0) ثابتة للأزمنة بين Fوتكون القوة •

:هوفالمعادلة الاولى سيكون حلها:                  اذن التغير في الزخم يساوي صفراً،  إي إن•

p (t ) = p (0) + Ft

≥τ ≥0 ))الفترتين محددة بين tهذا عندما تكون • t الزخم للجسيمة في نهاية  البرهة فسيكون

(:τ)الزمنية 

p (τ) = p (0) + F τ
)يكون الحل لها هو  فالمعادلة الثانية • p = constant)ة ومن ثم فان خلال جميع  البرَُهْ  الزمني

كما في أعلاهp(τ)هويكون الزخم لها    )t=τ)بعد    ما 
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نجعل الزخم لنفترض أن تكون الجسيمة مبدئياً ساكنة، وعليه فولتبسيط الآمر أعلاه، *•

p= 0)    الابتدائي يساوي صفر، أي إن   (p2/2m )فأن الطاقة الحركية ستكون  (    (0)

في جميع الأزمنة اللاحقة  بعد حالات   (F2τ2/2m)وعليه فستكون قيمتها هي 

.تأثير القوة

 (F2τ2/2m)وعليه فأن الطاقة الكلية للجسيمة المعجلة قد ازدادت الى القيمة 

. بواسطة تلك القوة المؤثرة

EKinetic:انّ أي  = ( p2/2m)= (F2τ2/2m)

ممكن أن تأخذ أي ، فان طاقة الجسيمة ممكن أن يأخذا أي قيمةτو   Fوطالما 

.قيمة أيضا

 يمكن وبنفس الأسلوب يمكن اخذ أنظمة أكثر تعقيداً، فمثلاً •
.حسب كمية الطاقة المعطاة لجسم يدور
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فمثلاً يمكن حسب كمية الطاقة المعطاة لجسم يدور•

ωوهو يرتبط بـ السرعة الزاوية  Jيرمز له بـ angular momentum))فالزخم الزاوي •
:بالقانون التالي 

J = Iω
   moment of inertia (I)يمثل عزم القصور الذاتي Iحيث  إن.

مع  Jلـكل منمبدأ التشابهوعلينا أن نتذكر دائماً استخدام •

p  ؛ و𝓿  معω ؛ وm  معI

معادلات لغرض افتراض الالدورانيّة و الانتقالية في الحالات •
.لها بطريقة سهلة وسريعة
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torque))ولغرض تعجيل الدوران،   فسيكون من الضروري تسليط عزم  تدويري •

،  فمعادلة نيوتن ستكون (Tويرمز لها بـ Twisting force))قوة برم أو دوران 

:اذن

الزخم الزاويT =Jقوة البرم              •

فان طاقة الدوران للجسم تزداد ( τ)   خلال زمن قدره Tفإذا كان العزم المسلط  هو 

خلال برهة زمنية  ( مسلط او محدد)وهذا يعني إن أي عزم عشوائي T2τ2/2I)بمقدار 

     (τ )بأمكانه ان يثير الدوران إلى قيمة جديدة عشوائية أو محددة من الطاقة.

عندما والحركة التوافقية ممكن أن تحدث. فالمثال الأخير متمثل في المهتز التوافقي•
تعاني الجسيمة قوة إرجاع وبقوة تتناسب خطياً مع الإزاحة وعليه فأن 

F = -k x
، هو ثابت القوة،  فالنابض الحلزوني القوي يملك ثابت قوة كبير مثلاkحيث ان •

:هي إشارة إلى إن القوة تتجه عكس الإزاحة Fوالعلامة السالبة لـ 

ها ، والقوة عندما تكون سالبة فهذا يعني إن(الإزاحة نحو اليمين)موجبة ( x) عندما  •

:تدفع نحو اليسار وبالعكس فمعادلة نيوتن يمكن أن تكتب بالصورة التالية
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m ( d2x/dt 2 ) = -k x

:وحلها
x(t)=A sinω t        ………….(4)    

:هنا تعطى بالعلاقة التاليةωحيث إن  •

ω=(k/m)½

:وعليه فأن ( m ẋ)  فالزخم يكون  •

p(t) = m ω A cos ωt ……………… (5)

ر فأن موقع الجسيمة يتغيّ : وخصائص هذه  الحركة مألوفة 
ويكون =ω/2πمع التردد (   sin ωt)توافقياً   كـ 

الزخم نهائي عندما تكون الإزاحة هي أقصى قيمة أي عند 
A=x  وهناA تمثل السعة(amplitude )ويكون . للحركة
ى بأعظم قيمة عندما تكون الإزاحة بقيمتها الصغر( الزخم)

(½   kA2)   فالطاقة الكلية ستكون (  (x=0أي عندما   
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هنا ترتبط طاقة الجهد ؛  ووطاقة الجهدالطاقة الحركية الطاقة الكلية هي مجموع * •

:بالعلاقة التاليةبالقوة 

F= - dV/dx

k xF-وبما ان في هذه الحالة ان    :سيعطى بالعلاقةV))فأن الجهد=

V=½kx2

:فان الطاقة الكلية ستصبح x = 0عند V= 0فاذا كانت 

ETotal = p2/2m + V= p2/2m +½kx2 = ½ kA2

:واستخدام العلاقة المثلثية التالية 5و 4وبالتعويض في المعادلة 

Sin θ + cos θ = 1

: (ETotal)سنحصل على ان الطاقة الكلية•

ETotal =  ½ kA2

دام نبضات و ذلك باستخيمكن رفعها إلى أي قيمة نريد وهنا نستنتج ان الطاقة للجسيمة المتذبذبة 
.Aمسيطر عليها تضربها او تزيحها إلى أي سعة ممكنة ، ولتكن 

يمَُثَّل بـ  والذي)، وهيئة المتذبذبتركيب ومن الضروري أن ننتبه إن التردد للحركة يعتمد فقط على 
k وm )فالسعة تسيطر أو تحدد الطاقة عبر المعادلة .  ويكون مستقل  عن الطاقة

ETotal =  ½ kA2وهذه تكون مستقلة عن التردد.
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فالدروس التي استنتجناها من هذه الأمثلة بأن الفيزياء التقليدية•

.تستطيع تحديد المسارات والمواقع. 1

ذلك تسمح بأنماط الحركة الانتقالية والدورانية والاهتزازية بأن ترُفع لأي قيمة من الطاقة و. 2
.بتسليط و السيطرة على القوى أو العزوم او النبضات المؤثرة على الأجسام

.والخلاصات أعلاه هي مستقاة من الممارسات اليومية

ت إن إلا إن تلك القوانين لا يمكن تطبيقها على الذرّات المفردة وان التجارب العالية الدقة، أظهر
.ي نقل الطاقةقوانين الميكانيك التقليدي قد فشلت عندما نتعامل بمقادير أو كميات صغيرة جداً ف

. وكلا الخلاصتان تم الاستعاضة عنهما بالميكانيك الكمي

(  p)  و ( x)   تصبح غير ممكنة، إذ انه لا يمكن تحديد  ( المعادلة التي تخص الزخم)( 2)فالمعادلة  

.بنفس الوقت وهذه هي فرضية استحالة تحديد الموقع أو المسار

م أو مقادير فشلت، بأنها تصبح غير قابلة للتطبيق أيضا، إذ لا يمكن نقل الطاقة بقي(  3)والمعادلة  

الجسيمات وعليه فأن قيم الميكانيك التقليدي في الحقيقة تكون تقريبية لسلوك. عشوائية

.  الكبيرة

و انتقالات في حالة الكتل الصغيرة و كذلك لقيم صغيرة من عزوم الزخم الزاوية، أوالتخمينات تفشل 

.الطاقة ذات القيم الصغيرة



2aكم 
فشل الفيزياء الكلاسيكية

اشعاع الجسم الاسود
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: فشل الفيزياء الكلاسيكية •

لى اظهرت التجارب العملية في نهاية القرن التاسع عشر ع•

انيك اختلاف كبير في النتائج المستنتجة بطريقة الميك

انه التقليدي و لا يمكن توضيحها حسب ذلك الميكانيك إذ

ادير من الخطأ انتقال الطاقة بشكل مستمر في الأنظمة وبمق
.عشوائية وذلك أدى إلى اكتشاف ميكانيك الكم
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: Black Body Radiationإشعاع الجسم الأسود•

ا ن أي جسم ساخن يبعث أشعة كهرومغناطيسية وعند درجات حرارة عالية يكون •
هناك جزء لا بأس  به من الأشعة تقع في المنطقة المرئية من الطيف 

لطيف الكهرومغناطيسي، وتكون الأشعة ذات الأمواج القصيرة بنسب أعلى في منطقة ا
فيتولد الضوء عند رفع درجة الحرارة. الأزرق

,يوضح الجسم الأسود والانعكاسات المتعددة للأشعة المنبعثة(: 1)شكل

داخله  مع توضيح الحزمة المنطلقة من فتحة ثقب الدبوس و المتجهة

نحو الكاشف

السابق ( 1) وهذه الظاهرة تتجلى عندما يبدأ الجسم بالتوهج بلون احمر ساخن كما في الشكل •
إذ يكون بإمكانه ابعاث( الجسم الأسود)والذي يبيّن كيف إن خروج الطاقة يعتمد على الباعث 

ود هو وان أفضل تقريب للجسم الأس. أو امتصاص جميع الترددات للإشعاع بشكل متجانس( إشعاع)
أن يكون ثقب دقيق في حاوية ساخنة، وبسبب كون الإشعاع الذي يخرج من الثقب هو ممتص

وكذلك الشكل. ومنبعث في الداخل عدة مرات فأنه قد وصل إلى حالة التوازن الحراري مع الجدران
.  السابق اظهر خاصيتين رئيسيتين
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:2شكل •

الطاقة بوحدة الحجم لوحدة مدى الطول ألموجي لحجيرة الجسم السود ولدرجات 

.حرارة مختلفة

كُلما  , كيفية ازدياد كثافة الطاقة في المنطقة المرئية: لاحظ

وكيفية انزياح القمم باتجاه , ارتفعت درجت الحرارة

ولاحظ كذلك كيفية ازدياد كثافة الطاقة الكُليِة  , الطول ألموجي الأقصر

(المساحة المحصورة تحت المنحنى)ممثلة بـ وهي

زيادة هي إن قمم المنحنيات تنزاح نحو الأطوال الموحية الأقصر ب: الخاصية الأولى

درجة الحرارة، وان ذيل الطول ألموجي القصير ينتشر أو يقع ضمن معظم 

نتج إن ذلك يدل على انزياح اللون نحو اللون الأزرق كما است. المنطقة المرئية

خلاصة، بأن الطول  Wilhelm Wienإن تحليل المعلومات أعطت . سابقا  

قانون )التاليةألموجي للقمة القصوى للانبعاث يرتبط بدرجة الحرارة بالعلاقة 

(:واين للازاحة
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•
•Wien's Displacement law : T λ max = Constant    . . . . .   . (1)

:  1000Kاي انها ستساوي عند درجة  x 10 mK 2.9والقيمة التجريبية للثابت هي   •

λ max = 2900nm

وقد : Josef Stefanالتي لوحظت من قبل جوزيف ستيفان :  والخاصية الثانية•

حاصل )الطاقة هنا بوحدة الحجم ( u)   ويرمز له بـ كثافة الطاقة الكليةاتخذ 

جمع جميع الاطوال الموجية للمجال الكهرومغناطيسي في ذلك الحجم لتلك 
:و يعطى بالعلاقة التالية( الدرجة الحرارية

• Stefan's Law: u = a T4 . ………………… . . . . . . . . (2)
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ة وهناك قانون بديل عن تلك العلاقة بشروط القدرة المنبعثة بوحدة المساح•

(M .) إذ تتناسب القدرة المنبعثة مع كثافة الطاقة للباعث وعليه فأنM تتناسب

:بالشكل التالي( 2) وعليه فأنه يمكن كتابة العلاقةT 4طرديا  أيضا مع 

M = σT4

x 10-8 5.67)وقيمته التجريبية هي  (. بولتزمان–ستيفان )يدعى بثابت ( σ)   فالثابت • W m-2K-4)

سيشع طاقة 1000Kمن جسم اسود بدرجة  cm2 1وعليه فأن مساحة •

وهذا ما. )عند الأخذ في حساباتنا جميع الأطوال الموجيةّ Watts 5.7بمقدار  

ة الجو جعل أغنام المارينو ذات الصوف الأسود المميز لها بأن تتكيف على طبيع

م التي وعليه فأن الجسم المعتم الأسود هو أفضل الأجسا(. الحار لقارة استراليا

.تبعث الأشعة
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اتخذا النظرة التقليدية للمجال (  James Jeans)وبمساعدة  (  Rayleigh) اللورد رالي أما •

ليه فأن وع. الكهرومغناطيس كحاصل جمع المذبذبات التوافقية لجميع الترددات للضوء المنبعث

:الطول ألموجي للضوء سيعطى بالعلاقة

ند وقد اعتبرت بأنها مقدار إثارة المذبذب بذلك التردد، وعليه فأن معدل الطاقة لأي متذبذب ع•

.kTسيكون  Tدرجة حرارة 

(  λd   +λ)الى ( λ)إذن كثافة الطاقة، ضمن منطقة أو مدى من الأطوال الموجية من •

مضروبة بـ معدل ( dN(λ))  ستمثل عدد المذبذبات بوحدة الحجم في ذلك المدى و يرمز لها بـ 

:ومن ثم فأنها ستساويkTالطاقة لها 

d u (λ) = kT dN (λ)



8
: جينس–قانون رالي تعطي Nوالحسابات البيّنة لـ •

Rayleigh – Jeans Law :  d u (λ) = ρ(λ) dλ ;     ρ (λ) = 8kT/ λ4        ………..(3)

كثافة الحالات تمثل الطاقة بوحدة الحجم لوحدة الطول ألموجي ويدعى بـ ( ρ) حيث إن 

 ((density of states .   وهذا يعني عندما  تضربρ كثافة الطاقة بمدى الطول ألموجي سنحصل على

(Energy density).

إلى λفي المدى للأطوال الموجية من   مضروبة ( λ)d u(كثافة الطاقة  أي •

(λ(λ+ d.
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سنحصل على لذلك المدى في الحجم ( λ)d u(   (كثافة الطاقة ضربوعند •

. يةالمنطقة التي تعود للإشعاع لذلك المدى من الأطوال الموحفي الطاقة الكلية 
( λ)انه كلما صغرت قيمة ( جينس –رالي ) وللأسف وجد بالنسبة لقانون 

( .3)تزداد دون المرور بقيمة قصوى كما في الشكل ρ(λ)فأن 

:3شكل •

الجسمإشعاع وضح محاولة نظرية لحساب ي

(3)السود حسب  معادلة 

,  جينز-قانون رالي

حصلنا على كثافة طاقة كلية

لانهائية عند الأطوال الموجية القصيرة 

بنفسجيةوهذه هى ما يدعى  بالفاجعة الفوق)

في حين معادلة بلانك أعطت

النتائج العمليةأفضل تطابق مع 

.لاحقا(4)بتطبيق المعادلة 
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ددات أي ذات التر( المتطرفة)وهذا يدل ضمنا  إن المذبذبات ذات الأطوال الموجية القصيرة جدا  •

وهذه تكون مثارة ( ray-𝛾) وحتى (   X-ray)العالية ستعود للضوء الفوق البنفسجي  والـ 

.بشكل متطرف حتى و إن كانت بدرجة حرارة الغرفة

إن (.وجد ظلاموفي الحقيقة لا ي)الظلام، وطبقا  للفيزياء التقليدية فأن الأجسام يجب أن تتوهج في 

ا هذه النتيجة المهمة تدعى الفاجعة الفوق البنفسجية، ولكن حسابها لا يمكن تجنبه إذا م

.استخدمنا الميكانيك التقليدي
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ع وهو كان ضليدرس ماكس بلانك هذه المشكلة من وجهة نظر ثرموديناميكية * •

طاقة في هذا المجال وقد وجد انه بالإمكان حساب مشاهداته التجريبية عند فرض تلك ال
وهذا ما احتاجه ليفرض إن طاقة الإشعاع .  (quantized)على إنها طاقة مكممة 

.  وائيللمذبذب للتردد المعطى تكون محددة بقيم معينة ولا يمكن أن تتغير بشكل عش
تكون قيم طاقاته المسموحة  ( )وعلى وجه الحدود افترض في حالة المهتز بتردد  

هو ثابت ويدعى ألان بثابت ( 𝘩)  حيث ان ( h)جميعها مضاعفات متكاملة لـ 
x10 -34 6.626)بلانك والقيمة الحديثة لثابت بلانك هي  Js  )

..…,h,   2 h ,0)بأمكانها اخذ القيم ( )وبما ان تردد المتذبذب • )  

من فأنه يمكن ان تتصور شعاع من الضوء وبذلك التردد بأنه مؤلف من سيل•
هذه وان hالجسيمات كل واحدة منها تملك مقدار  من الطاقة بقيمة 

ة  وهذا يعني إذا كان الشعاع يحمل طاقة معين. الجسيمات تدعى بالفوتونات
ي في منطقة معينة من الطيف فأن عدد الفوتونات الواصلة سيساوEولتكن 

( .E) /hالمقدار  
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والطول ألموجي 100W = 100 JS -1يساوي 100Wثانية لمصباح اصفر بقدرة (1)في فمثلا  •

= 5.4 x 1014او تردد  λ =560 nmللضوء الأصفر هو   Hzفهذا يعطي:

1(S) x (100JS -1 )  (6.626 x 10 -34 JS) x (5.4 x 10 14 Hz) = 2.8 x 10 20 photons

:  وعند تضمين فرضيات بلانك على إشعاع الجسم الأسود كما يلي•

فان الجسيمات على جدران الجسم الأسود تكون في حالة حركة حرارية وهذه
تزان للمجال الكهرومغناطيسي وعند الا( هي المصدر)الحركة تثير المذبذبات 

وطبقا  . سوف لا يكون هناك جريان صافي للطاقة بين الجدران والمجال
وي بالطاقة للنظرية الكلاسيكية تكون جميع المذبذبات للمجال متشاركة بالتسا

ن المجهزة من قبل الجدران، وعليه حتى الترددات العالية يفترض ستكو
.تكون مثارة

مقدار من بينما في النظرية الكمية إن المذبذبات تثار فقط في حالة اكتسابها•
. hلـ الطاقة يساوي على الأقل   

قة وهذه تكون كبيرة جدا  بالنسبة لجدران الجسم الأسود من ان تجهز الطا•
.ر مثارةوعليه فإن المذبذبات ذات الترددات العالية ستبقى غيبترددات عالية 
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واسطة اذن، تاثير التكمم بالنسبة للمذبذبات ذات الترددات العالية يمكن حذفه، إذ انه لايمكن اثارتها ب•

...الطاقة المتوفرة لدينا او عن طريق التسخين

 P.W. Atkinsمن كتاب   Chapter( 21) ويمكن الحصول على حسابات دقيقة في الفصل •

:كما يلي( λ + d λ λ   ..…)    ومن ثم سنحصل على كثافة الطاقة ضمن المدى من •

Planck distribution: d 𝑢 = ρ(λ) dλ . .…………. . . . . (4a)

تمثل كثافة الطاقة𝓤حيث إن  

4b) .......................)

𝝀او للمدى من    𝝀تمثل كثافة الطاقة بوحدة الحجم للطول الموحى ρحيث ان )
/ρ(λ) = 8kTو تساوي (  𝝀d  ₊𝝀) الى  λ4  (3)معادلة كما مر سابقا في
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النظر عن جينز بغض-يكون مشابه لتعبير راليوقانون  بلانك   لكثافة الحالات•

فعندما يكون ،( .exp)جميع العوامل والحدود الجبرية التي تحتوي على الأسس 

يكون كبير ( hc/λkT) الطول الموجي قصير فأن الحد 

وهذا ر كثافة الطاقة ستصبح صفوعليه فأن .  يساوي صفر تقريبا  exp)( -hc/λkT)≈ 0المقدار  وان •

يل وبالمقابل عندما يكون الطول الموجي المراد دراسته طوالأمر متفق تماما  مع المشاهدات التجريبية،

يكون الحد

•(hc/λkT ) صغير وان المقدار الاسُّي(Exp.)   يمكن تقريبه كما يلي:

• (hc/λkT )-1 جينز–إلى تعبير رالي يمكن أن يختصر التعبير الرياضي لبلانك وفي هذه الحالة فان.

8π kT / λ 4  =Rayleigh – Jeans Law :  d u (λ) = ρ(λ) dλ;     ρ(λ) 

قد (  h)  لاحظ إن التعبير الكلاسيكي يمكن الحصول عليه أيضا إذا كان •

0hفسيأخذ غاية توزيع بلانك كـ    )افترض خطأ  يساوي صفر 
فأن التعبير الكامل ينطبق .  denominator , numerator)) للبسط والمقام 

.السابقعلى المنحني التجريبي تماما  و لجميع الأطوال الموجيةّ كما في الشكل
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:مثــــــــــــــــــــــــــال •

مثل الحجم الداخلي لبصلة مصباح )m-3 100تجويف كروي حجمه  •
، احسب الطاقة في داخل التجويف k100قد سخن الى درجة ( صغير

:العائدة للأشعة التي تقع بين المدى من الأطوال الموجية التالية

•nm575–550.

:طريقة الحل •

في ( density of  states)لحساب  كثافة الحالات 4باستخدام العلاقة •
(  nm25–82) ثم نضرب بــ . منتصف مدى الاطوال الموجية 

، وأخيرا نضرب بحجم (energy density)للحصول على كثافة الطاقة 
.التجويف الكروي
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: Heat capacitiesالسعات الحرارية •



الرازي / كُليةّ التربية

قسم الكيمياء

2محاضرة الكم 



(F )13.2   الاطياف الذرية والجزيئية

Atomic & molecular spectra

ء، يأتي من مشاهدة الترددات للضو. إن الدليل المباشر على تكمم الطاقة•

ات الممتصة والمنبعثة من قبل الذرّاة والجزيئات إذ أظهرت إن الامتصاص

ي محددة وتردداتها واضحة وليست مستمرة وكذلك بالنسبة للجزيئات ف

.  حالة امتصاص الطاقة أو انبعاثها

ة والجزيئية وعليه فأنه يجب أن يقترح ميكانيك جديد لتفسير الأطياف الذري

.والذي دُعي فيما بعد بـ ميكانيك الكم

•

.



HClطيف الاهتزاز الدوران لـ 



HClطيف الاهتزاز الدوران لـ 

•

:شكل  
إذ تمثل الامتصاصات الطيفية لحالات  HClألدوراني لجزيء  -طيف الاهتزاز

ازية ارة الأولى للحركة الاهتزثانتقالات الطاقة من الحالة الأرضية إلى الحالة الم

للجزيء



(  ذرة او جزيئة)ميكانيك الانظمة الدقيقة 

The dynamic of microscopic systems

كنقطة بداية عند اخذ علاقة دي برولي                       

.وتتُرك الخصائص الكلاسيكية لكتلة متموقعة

.  لموجةفالجسيمة من ألان ولاحقاً تملك موقع منتشر مثل سعة ا

يمكن إدخاله لاستبدال ψيرمز له بـ  ) فمفهوم دالة الموجة 

ضع المفهوم الكلاسيكي للمسار، والميكانيك الجديد يتطلب و

ψمخطط توضيحي لغرض حساب وفهم وادراك  



13.3a-معادلة شرودنكَرThe Schrödinger equation 

Erwin Schrödingerاقترح  1926في سنة •

.  معادلة، اذ عند حلها تعطي دالة الموجة لاي نظام

عادلات ويكون موقعها مركزياً بالنسبة لميكانيك الكم كم

اذ نجد عند حل معادلات. نيوتن للميكانيك التقليدي

يء ونفس الش. نيوتن فانها تعطي مسارات الجسيمات

نه عند بالنسبة لمعادلة شرودنكَر المفترضة الجديدة اذ ا

(  m)فبالنسبة لجسيمة كتلتها. حلها تعطي دالة الموجة

تكون لها المعادلة كما Eتتحرك في اتجاه واحد وبطاقة  

:يلي



The Schrödinger equation

…1

يمثل طاقة الجهد للجسيمة ويعتمد على( V)  حيث ان •

الموقع، 

هو تحوير ملائم لثابت بلانك( (h-Crossويقراء ℏو  •

:    و يساوي•



The Schrödinger equation

ة هناك عدة إشكال وتعابير لتلك المعادلة إذ قد تتضمن اعتمادية دالة الموج•

:على الزمن أو يمكن إعادة كتابتها لاكثر من اتجاه او بعُد، كما يلي

يمكن كتابة المعادلة كما :For one dimensional systemsو لبعد واحد •

:يلي

تكون ايظا دالة ψو دالة الموجة V(x)وتكتب xهو دالة لـ Vحيث ان الجهد •

.ψ(x)وتكتب xللازاحة 

•



The Schrödinger equation

:اوتكتب بالصيغة التالية•

•V هي طاقة الجهد للجسيمة فمثلاً للجسيمة الحرة إنV = 0 او مقدار ثابت.

:ةوبالنسبة للمتذبذب التوافقي البسيط فإن الجهد يعطى بالعلاقة التالي•

)



The Schrödinger equation

• ** for three dimensional systems :

و تساوي



The Schrödinger equation

كدالة للمحاور ( ψ)وفي الانظمة ذات التماثل الكروي فأنه يفضل اخذ 

.الكروية القطبيةّ



The Schrödinger equation

13.11شكل 

تأخذ القيم من صفر ( θ)يأخذ القيم من صفر الى مالانهاية، والارتفاع ( r)  الاحداثيات القطبية الكروية، فيها 

(   2π)تأخذ القيم من صفر الى ϕ(azimuth )والـسمتي  ( القطب الجنوبي( )π)الى ( القطب الشمالي)

.(∞)الى     (0)يأخذا مدى من القيم من rالاحداثيات القطبية الكروية و نصف القطر : ملاحظة



The Schrödinger equation

كمايلي•

:حيث ان•

:وفي الحالة العامة فأن معادلة شرودنكَر تكتب كمايلي•

:للنظام ويساوي( (Operatorهو هاملتون اوبريتور  Hحيث ان •



معادلة شرودنكَر والتي تكون دالة للزمن

:زمنوعندما يكون النظام دالة للزمن فأننا نستخدم معادلة شرودنكَر والتي تكون دالة لل

ً ( 3)فالحلول هي نفسها في المعادلة  لاحقا

في أولافلنفترض. ان هيئة معادلة شرودنكَر يمكن ترتيبها حسب النظام المطلوب

:لى حالة الحركة في منطقة تكون فيها طاقة الجهد تساوي صفراً فسنحصل ع

………..2     



معادلة شرودنكَر والتي تكون دالة للزمن

:ويكون حل المعادلة هو•

:تكون موجة لطول موجي مقداره( sinkx)او ( coskx) حيث ان •

λ=2π/𝑘

للموجة التوافقيةمع الهيئة العامة ( coskx)  ويمكن مشاهدة ذلك بمقارنة 

cos(2 πx/ λ) ب بسب) وهنا، فأن طاقة الجسيمة ستكون جميعها حركية

ولكن بما ان )                        ( ، وكذلك  (في اي مكان V= 0ان   

:بالعلاقة kالطاقة ترتبط بـ 



معادلة شرودنكَر والتي تكون دالة للزمن

اذن الزخم الخطي يرتبط مع )             (.   وان •

:الطول الموجي لدالة الموجة بالعلاقة التالية

. وهذه هي معادلة دي برولي مرة اخرى•

كَر في حالة جسيمات تتحرك بحرية، فان معادلة شرودن•

:ستؤدي الى الخلاصة التجريبية التالية 

اذا كانت الجسيمة في منطقة وتكون طاقة الجهد لها •

ر متجانسة ولكنها لاتساوي صفر فأن معادلة شرودنكَ 

:تكتب بالشكل التالي 



معادلة شرودنكَر والتي تكون دالة للزمن

ولكن أصبح لدينا( 3)فالحلول تكون كما في المعادلة •

تؤدي الى λ=2π/𝑘والان العلاقة       •

4)..............)

طاقة وة اذا كان الفرق كبير بين الطاقة الكليوهذه المعادلة تبينّ •

ة فأن الطول الموجي يكون الأقصر لدالة الموجة وبعبارالجهد، 

.أخرى أقصى طاقة حركية لأقصر طول موجي



معادلة شرودنكَر والتي تكون دالة للزمن

يكون وبالنسبة لجسيمة متوقفة فأن طاقة الحركة لها تساوي صفر، فس•

ة يكون لها طول موجي لانهائي، وهذا يعني إن دالة الموجة لها نفس القيم

.في اي مكان بالنسبة للجسيمة الساكنة اي ان                           

عندشكل انحنائها هو فالخاصية العامة لدالة الموجة •

)            (.اخذ المشتقة الثانية لها 

(يرأي عندها ستملك طول موجي قص)فعندما يكون الانحناء حاد •

 ً دالة وعندما تكون. والطاقة الحركية تكون كبيرة ايضا

(لفأن طولها الموجي يكون طوي)الموجة لا تتغيرّ بشكل حاد 

.وطاقتها الحركية تكون واطئة



معادلة شرودنكر

ان اقتران الانحناء الحاد مع الطاقة الحركية العالية•

ور ويعطي تص. يمثل توضيح حي لفهم الدوال الموجية

اج لمعرفة مثلاً لنفترض بأننا نحت.  عن شكلها التخميني

مة    دالة الموجة لجسيمة بطاقة جهد تتناقص بزيادة قي

:كما في الشكل ادناه)   ( 



معادلة شرودنكر

، (E) ولتكن قيمتها ( ثابتة)فإذا كانت طاقته الكلية •

يزداد من جهة اليسار نحو ( E-V)وبما ان الفرق  

ثر اليمين فأن دالة الموجة يجب ان تأخذ شكل منحنى أك

فنجد طوله الموجي ( : x)   حديةّ كلما زادت قيمة 

صور ومن ثم نستطيع ت. يقصر كلما زادت طاقته الحركية

ان دالة الموجة تأخذ الشكل الممتط كما في الشكل  

.السابق الجزء العلوي منه

ية، معادلة شرودنكَر هي معادلة مشتقة من الرتبة الثان•

الة فمثلاً في ح. ومن ثم فلها عدد غير محدود من الحلول

( A)يكون الحل         وفيه  )           ( الجسم الحر 

وله قيمة ( E) هنا يمثل قيمة kيأخذ اي قيمة و 

.عشوائية او افتراضية



معادلة شرودنكر

يح لـ   فالخطوة اللاحقة في مناقشتنا تتطلب وضع توض•

    (ψ ) وسنجد إن ذلك . او تعريف معينّ لها

بولة التوضيح يحقق أو يعطي حلولاً رياضية غير مق

 ً Eقيم  يعني رفض بعضوبإهمال تلك الحلول . فيزيائيا

.ةوالتي ستعود بنا ثانيتاً  إلى حقيقة  تكمم الطاق



((2bكم 

Heat capacitiesالسعات الحرارية 
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: Heat capacitiesالسعات الحرارية •

قة أن عند مراجعة إشعاع الجسم الأسود يتطلب اختبار كيف للطا•
تمتص بواسطة المجال الكهرومغناطيسي، وكذلك إن السعات

اقة الحرارية للمواد الصلبة هي مقياس عن كيفية اكتساب الط
.واختزانها في الاهتزازات للجسيمات وتكون مكممة أيضا

إذا لذا سنجد إن دراسة السعة الحرارية ستكون أيضا مكممة، ف•
نظمة افترضنا إن الفيزياء التقليدية يمكن تطبيقها على الأ

سة فان طاقة الاهتزاز الرئي( لمستوى جزيئه أو ذرة ) الدقيقة 
اوي لذرة تتذبذب في اتجاه واحد لجسم صلب فأنها يجب أن تس

من الذرات لمقطع معين ولها Nفإذا كان لدينا (. kT)المقدار 
ية حرية الاهتزاز في ثلاث اتجاهات، فان الطاقة الاهتزازية الكل

( .3NkT)لذلك المقطع تكون مساوية لـ 
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3NAومن ثم الطاقة الاهتزازية الموليةّ تساوي • kT = 3 RT

وهو ثابت الغازات N k=Rتمثل  ثابت افوكَادرو و  NAحيث ان 

:وعليه فأن السعة الحرارية الموليةّ عند حجم ثابت تعطى بالعلاقة التالية

Cv,m = (3Um/ 𝜕 T)v

هي الطاقة الاهتزازية الموليةUmحيث انّ 

:السعة الحرارية الموليّة عند حجم ثابت وان الفيزياء التقليدية استنتجت بأن 

Cv,m = 3R

. وبشكل مستقل عن الحرارة 

Dulong: وهذه النتائج معروفة بقانون • & petit اللذان استنتجا ذلك القانون.
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قانون لدرجات حرارة واطئة، لقد شاهد انحراف كبير عن ال( بتيت& دولونك ) لقد أعاد اينشتاين تجارب  •

عند الدرجات الحرارية الواطئة (  3R)أعلاه إذ إن معظم الفلزات تكون السعة الحرارية المولية لها اقل من 

.T  0كلمـــا  تقترب من الصفر وان قيمها 

ومن ثم استخدم ( ν)ولقد عزا اينشتاين ذلك بأنه ممكن كل ذرة تهتز حول موقع اتزانها بتردد مفرد قدره •

(.nhν)   فرضيات بلانك فارضاً إن الطاقة لأي تذبذب تكون 

.  تمثل اي عدد صحيح nحيث ان 

:وقد حصل على العلاقة التاليةالطاقة الاهتزازية المولية للفلزفقد حسب أولا •

ارية لاحظ هنا التشابه في النتائج مع علاقة  توزيع بلانك، ثم اوجد اينشتاين السعة الحر•
:  ليحصل علىTبمفاضلتها مع 
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-------(5)معادلة اينشتاين  (   5) معادلة  •

ية  يمكن فكها   كما يلي(kT>> hν) اذ نجد   بدرجات حرارة عالية ان • :،  فأن الحدود الجبرية الآُسِّّ

1 - (hν/kT) + …… 
:ومن ثم نهمل الحدود  العالية  الأسُس فتكون النتيجة كما يلي

.وهذه النتيجة  متفقة مع النتائج التقليدية
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ذلك يعني عند استخدام معادلة اينشتاين ( e-hν/kT→  𝟢) وعند درجات حرارة واطئة أي إن المقدار  •

وان التحليل الفيزيائي لهذا (. 4الشكل )ستعطي قيم اقل للسعة الحرارية وهذه متفقة مع النتائج العملية 

النجاح 

يُعزى عند انخفاض درجات الحرارة ستبقى فقط عدد قليل من •

.تمتلك الطاقة الكافية للتذبذب( الذرات ، الجزيئات ) المذبذبات •

وعند الدرجات العالية تصبح الطاقة متوفرة لجميع المذبذبات •

: لكي تصبح فعالة( الذرات و الجز يأت )

من المذبذبات ستساهم و إن اعتمادية  السعة 3Nأي إن جميع الـ 

(3)درجات الحرارة قد رسمت في الشكل الحرارية المولية مع 

.واعطى منحنى متفق بالشكل العام مع المنحنى النظري

اذ انه بدرجات الحرارة العالية إن . في حين النتائج الاحصائية لم تعطي تطابق بينّ•

(.في الحقيقة تتذبذب بمدى واسع من الترددات)جميع الذرات تتذبذب بنفس التردد تقريباً •

والنتيجة النهائية هي معادلة . إن التعقيدات أعلاه يمكن تلافيها بأخذ معدل تلك الترددات•

وعليه فأننا . وعند تطبيقها على نتائج اينشتاين أعطت اتفاق مع النتائج العملية. ديباي•

.نحتاج هنا لإدخال الكم في حساباتنا من اجل توضيح الخصائص الحرارية للمواد الصلبة•
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•(c) الظاهرة الكهروضوئيةThe photoelectric effect
ان هذه الظاهرة هي دليل على تكمم الطاقة، وذلك من حساب طاقات الالكترونات الناتجة من الظاهرة •

جية وجد انها الكهروضوئية ، فالالكترونات المنطلقة من اسطح الفلزات، عند تعرضها للأشعة الفوق البنفس

:تتصف بالخصائص التالية 

دار لا تنطلق الالكترونات من سطح الفلز مهما زدنا من شدة الاشعة ما لم يزيد تردد الاشعاع   عن مق.  أ•

.معين في القيمة وهذا المقدار يمثل قيمة مميزة لذلك الفلز

.الطاقة الحركية للالكترونات المنطلقة تتناسب خطياً مع تردد الاشعة الساقطة. ب•

ردد ستنطلق الكترونات من سطح الفلز حتى وان كانت شدة الضوء صغيرة جداً اذا كان ت. ج•
.الضوء اعلى من دالة العتبة او قيمة العتبة لذلك الفلز



8 ان المشاهدات أعلاه تفترض ان الالكترونات المنطلقة جراء تصادمها مع أي جسيمة تملك مقدار •
بطاقة فإذا افترضنا إن ذلك الجسم المتحرك هو فوتون و. كافي من الطاقة لنزع الإلكترون من الفلز

هو التردد للضوء فأنه حسب قانون حفظ الطاقة، إن الطاقة الحركية ( ν)، وان (hν) قدرها 
:للإلكترون يجب أن تتطابق مع القانون التالي

– Workهي دالة الشغل  (φ) حيث ان • function للفلز وهي الطاقة اللازمة لإزالة   إلكترون
.فأن الالكترون لاينطلق( φ) اقل من  ( hν) واحد من سطح الفلز، فإذا كانت 

:ان نتائج المشاهدات اعلاه تعطي دليلاً 

ق مع على إن الطاقة الحركية لأي إلكترون منطلق يجب أن تتناسب مع التردد، وهذا متف. 1
.أعلاه( أ)

شاهدة عند اصطدام الفوتون مع أي إلكترون فأنه يعطي كل طاقته وعليه فأننا نتوقع م. 2
الحالة الكترونات منطلقة حالما تصطدم تلك الفوتونات مع السطح وهذا يتفق أيضا مع

.أعلاه( جـ)

..وهنا يمكن اعتبار ان الضوء عبارة عن سيل من الفوتونات او الجسيمات
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•(d ) ُظاهرة كومبتنThe Compton effect

.  جراء تصادمها بالالكترونات، إن أطوالها الموجيةّ تتغيّر قليلاً X-rayلقد لوحظ عندما تستطير أشعة  

.وهذه تدعى بظاهرة كومبتون

لساقط وعليه فأنه وطبقاً للفيزياء التقليدية، إذ تتوقع تعجيل الإلكترون بواسطة المجال الكهربائي للضوء ا

.سيكون من المتوقع أن نجد أطوال موجية مختلفة في الأشعة المُستطارة

ارة إلا انه وجد في الحقيقة إن الطول ألموجي ازداد بمقدار مفرد ومحدد ويعتمد فقط على زاوية الاستط

.اقطمن الضوء الساقط، بالإضافة إلى إن الانزياح يكون غير معتمد على الطول الموجي للضوء الس

إن النظرية الفوتونية للضوء، توضح تلك المشاهدات بشكل جليّ إذا •

( ν)اعتمدناها على إنها كطاقة، ف فوتون من الضوء وبتردد •

:يكون له زخم طردي مع التردد كما في العلاقة•

تردد شكل يوضح حيود الاشعة الساقطة على حزمة من الالكترونات متجهة نحو الاعلى وقد حصلنا على اشعة حائدة ب•

.عن خط امتداد الاشعة الساقطة( 𝛷)والكتروناً مستطير بزاوية قدرها ( ύ)  مختلف 

و أخرى ذات كتلة (  h/λ) وعليه فأن الاستطارة يمكن اعتبارها على إنها تصادم بين جسيمة ذات زخم  •
me
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صل بأن يكونا محفوظان في ذلك التصادم،  فأنه يمكن أن نحالزخم الخطي وصفة الطاقةومن خلال دمج •

:على التعبير الرياضي التالي

• ً بطول موجي كومبتنُ للإلكترونيدعى (  Ch/ me)والمقدار . والمعادلة أعلاه تم التأكد منها عمليا

• (( wave length for electron  وتكون قيمه(2.43pm)

(1pm=10-12m)

Ѳ)  ويكون أقصى انزياح للطول ألموجي ممكن أن يحدث عندما تكون • وهنا ترتد ( ° 180 =
وبغض النظر عن الطول ألموجي ( pm 4.86) الى الوراء نحو مصدر الضوء و تكون قيمته  

.الساقط
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•(e )حيود الالكتروناتThe Diffraction  of electrons

(  ةأو كتليّ )إن كل من الظاهرة الكهروضوئية وتأثير كومبتون اظهرا بأن للضوء خصائص جُسيميّه •
Clinton Davissonقام العالمان 1925بالإضافة لما تم إثباته بأن للضوء صفة موجيّة الا انه في سنة 

شاهدا حيود الالكترونات بواسطة بلورة كما في الشكل المجاور وكذلك شوهد إن Lester Germerو 

.للموجة صفة الجسيمة وخصائص كل من الجسيمة والموجة يمتزجان ببعضهما

إلى إن أي جسيمة Louis de broghlieخلُص 1924وفي سنة •

يجب أن يكون لها شيء من𝘱و تنتقل بزخم  الفوتوناتليست فقط •

:التالية بعلاقة دي برولي الطول ألموجي ومعطى •

– Davissonوقد تحقق من التعبير أعلاه كلٍ من • Germerتنُتجريبيّاً وبالنسبة للفوتونات بظاهرة كومب.
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•
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•(F )13.2   الاطياف الذرية والجزيئيةAtomic & molecular spectra

بل الذرّاة يأتي من مشاهدة الترددات للضوء، الممتصة والمنبعثة من ق. إن الدليل المباشر على تكمم الطاقة•

زيئات والجزيئات إذ أظهرت إن الامتصاصات محددة وتردداتها واضحة وليست مستمرة وكذلك بالنسبة للج
.  في حالة امتصاص الطاقة أو انبعاثها

ما بعد بـ ميكانيك وعليه فأنه يجب أن يقترح ميكانيك جديد لتفسير الأطياف الذرية والجزيئية والذي دُعي في•

.الكم

شكل يوضح خطوط اطياف الانبعاث للذرات المثارة لكل من الهيدروجين والزئبق و النيون•
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:شكل  

ى إذ تمثل الامتصاصات الطيفية لحالات انتقالات الطاقة من الحالة الأرضية إلHClألدوراني لجزيء  -طيف الاهتزاز

ارة الأولى للحركة الاهتزازية للجزيءثالحالة الم



3كم 

شرح دالة الموجة

Interpretation of Wavefunction
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بورن يكون مستنداً على فرضية اقترحت من قبل العالم ماكس( ψ)  ان توضيح 

عة للموجة على المشابهة للنظرية الموجيةّ للضوء والتي فيها مربع السوتستند 

الكهرومغناطيسية يكون ممثلاً كالشدة ومن ثم بشروط الكم كوجود عدد من
هو المربع لدالة الموجة  Bornفسيكون توضيح مقترح (. تواجدت)الفوتونات 

جاد سيتناسب أيضا مع احتمالية إي( تكون مقداراً معقداً ψا ذا  *ψ ψلـ او 

الجسيمة لكل نقطة في الفضاء خصوصاً بالنسبة لنظام 

:واحد –باتجاه 

(.𝑥)    عند نقطة معينة ( ψ)دالة الموجة لجسيمة هي ( السعة)اذا كانت 
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تكون )𝑥𝑑+𝑥)و(   𝑥)  فان الاحتمالية لتواجد تلك الجسيمة بين   •

(.*𝑥𝑑ψ ψ)متناسبة مع الحد 

ا طالما إنه)سيمثل كثافة الاحتمالية *ψ ψوذلك يعني ان •

يجب أن تكون مضروبة بالطول المتناهي في الصغر 
نفسها ( ψ)لأجل الوصول إلى احتمالية ( 𝑥𝑑)للمنطقة 

.سعة الاحتماليةوالتي تدعى 

جاهات  فبالنسبة لجسيمة لها القدرة لان تتحرك في ثلاث ات•

عتمد فان دالة الموجة ت(  مثلاً الكترون قرب نواة في الذرّة)
𝑥,𝑦,𝑧نسبةً للاحداثيات 𝑟على النقطة  
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•
وسيكون التوضيح ( x, y, z) للاحداثيات •

المجاور  والذي كما في الشكل(  (لـ •

لدالةّ الموجة في  Bornيوضح استيضاح   

جمي اتجاهات ثلاثة لايجاد الجسم في العنصر الح
dxdydz =τ 𝑑

حاصل يتناسب طرديا لمقدار rعند موقع 

عند ذلك *ψ ψو القيمة لـ τ 𝑑الضرب لـ 

.الموقع
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:من ثم يمكن القول•

عند ψلدالة الموجة لجسيمة هي   ( الضخامة)اذا كانت السعة •
م فأن احتمالية ايجاد تلك الجسيمة في الحج( r)   نقطة 

rعند النقطة  =      ( dxdydz)  المتناهي في الصغر 
)                    .تتناسب مع   
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13.2مثال •

اذا كانت دالة الموجة لالكترون في اوطأ حالات الطاقة لذرة•

وفيها:                            الهيدروجين هي 

.هي المسافة عن النواةrو •

لى لاحظ ان دالة الموجة تعتمد فقط على المسافة وليست ع* 
. الموقع الزاوي

ي داخل احسب الاحتماليتان  النسبيّتان  لإيجاد الالكترون ف•
:موجود( pm3 1.0)  حجم صغير وبقدر 

.عن النواة)       ( عند مسافة   ( ب) عند النواة، (  أ)
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:الحل •

الذي يحُسب عند ( )      تتناسب الاحتمالية مع المقدار •

لو حتى و)الموقع المفترض وان الحجم يكون صغير جداً 

اذ يتيح ذلك لنا من إهمال الاختلافات( بمقياس حجم الذرة

المتوقعة، وعليه فأنه يمكن كتابة ( ψ)  في 

•)                               (

:ومن ثم فأن( r = 0)  عند النواة ستكون قيمة -(أ)•
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ولكن باتجاه ( لقيمة عشوائية)   = rعند مسافة       -ب•

محدد،

:  فان•

:نسبة الاحتماليات ستكون 
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:تعليق •

بأن نجد الالكترون ( 7وبنسبة )لاحظ انه يكون اكثر احتمالاً •

افة عند النواة من ان يكون في ذلك العنصر الحجمي عند مس

ي فان احتمالية وجود الالكترون ف. من النواة)              ( 

ستكون ببساطة (    ملم   1)   نفس الحجم عند المسافة 
.ليست صفراً ولكن تكون من الصغر يمكن اهمالها

:  تمرين •

-Heاذا كانت دالة الموجة لأوطأ طاقة اوربيتال في ايون •

.، فاعد الحسابات لذلك الايون()                         هي 

(  اي تعليق)•
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هي الحل لمعادلة شرودنكَر وكذلك ( ψ) فاذا كانت  •

ذلك يعني، دائماً يمكن . هو اي ثابت( N) حيث ان ( N) لـ 

فتصبح Bornإيجاد عامل كالاحتمالية مثلاً في مفهوم بورن 

يمكن أول تبسيط مهم وهذا هو العلاقة هي علاقة تساوي 
والذي دُعي فيما بعد بثابت ( N)افتراضه، ومن ثم العامل 

Nفاذا ضمناّ .    (Normalization Constant)التطبيع 
مع دالة الموجة فان ايضاح بورن ينص على ان احتمالية

تكون مساوية الى  )         ( وجود الجسيمة في المدى 

.
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كلٍ وكذلك حاصل الجمع للفضاءات الحجمية لكل الاحتماليات•

احتمالية الجسيمة )يجب ان يكون وحدة واحدة . على حده
ويعبر ( Unityفي اي مكان في النظام تكون وحدة واحدة 

:عنها بالتكامل التالي 

ومن ثم بأخذ التكامل لجميع الاحتمالات يصبح بالامكان•

ة وهذه الطريقة تدعى بتطبيع دال. ايجاد ثابت التطبيع
.الموجة
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ه سنستخدم دالة الموجة المطبعة أي انومن الان ولاحقاً * •

ستكون متضمنة ( ψ)   من ألان ولاحقاً سنفترض إن 

:عامل التطبيع فنكتبها 

(6)-------------

:وفي حالة الاتجاهات الثلاثة فان دالة الموجة ستتُطبع كما يلي

(7 )----
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13.3مثال •

13.2دالة الموجة المستخدمة لذرة الهيدروجين في المثال •

.هي غير مطبعة، طبعها

:طريقة الحل •

العنصر الحجمي في ثلاثة . اعلاه( 7) من المعادلة Nقيم •

𝑑τ) اتجاهات في الفضاء يكون  = 𝑑x𝑑y𝑑x .) ولكن

كون في مسائل ذات تماثل كروي كما في هذه الحالة فانه سي

لشكل من السهل أن نحل بتعبير الإحداثيات الكروية كما في ا
:السابق أي إن
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:ومن ثم فان العنصر الحجمي يكون•

𝜃فان  لـ ∞يقع ضمن مدى من صفر إلى  rولنصف قطر •
πالى 0وتاخذ القيم من (   colatitudesتمثل الارتفاع )

 2πالى 0ياخذ القيم من ( Azimuth)و العلو اوالسمتي 
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: الجواب •

وبها                           نجد ان ( 7)من المعادلة •

ومن ثم، لأجل جعلها تساوي وحدة واحدة اي ان•

•N=                                              
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:فان دالة الموجة المطبعة ستصبح•

•

:      تعليق •

فاننا يمكن الحصول على الاحتماليات 13.2اذا اعيد المثال •
الحقيقية لايجاد الالكترون في العنصر الحجمي لكل موقع

و2.2x10-6( أ)وليست فقط قيمها النسبية فيكون لـ 

.3.1x10-7( ب)لـ •
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:مثال •

(  13.2)المعطاة في المثال +Heطبع دالة الموجة لـ •

                     =Nالجواب  •
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:التكمم•
اهمها ان قبول ايضاح بورن يتطلب منا بأن نضع تحفظ  على الدوال الموجية و•

بأن تكون حادة * ). يجب ان لاتكون دالة الموجة لانهائية بمكان ما: بأن 

وثابت التطبيع يكون صفر( ومستدقة ولها عرض صفري تقريباً 



4كم

التكمم
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•(c )13.3 التكمم :

لى ان قبول ايضاح بورن يتطلب منا بأن نضع تحفظ منه ع

:الدوال الموجية واهمها بأن 

.يجب ان لاتكون دالة الموجة لانهائية بمكان ما. 1

(بأن تكون حادة ومستدقة ولها عرض صفري تقريباً * )

مطبعة ان ذلك يعني ان الدالة ال. وثابت التطبيع يكون صفر

ماعدا عندما تكون قيمها تكون صفر في جميع الامكنة 

.والذي يكون غير حقيقيبقيمة لانهائية

كَر ان هذه الافتراضات مطلوبة لبعض الحلول لمعادلة شرودن
.وانها تعطي حلولاً مقبولة  والتي سنراها لاحقاً 



3
لانهائية في ( ψ)  فالمطلب بأن نجعل •

كل الامكنة هو ليست ما اراده استيضاح 
بورن فقط، فبامكاننا ان نتصور دالة 

ـ  غريبة تعطي قيم عليا لاكثر من قيمة ل
ψ*ψو لنقطة مفردة.

لك وان استيضاح بورن يتضمن بأن مثل ت•
الدوال غير مقبولة لانها ستكون غير 

دة، منطقية بأن تملك اكثر من احتمالية واح
اي ان الجسيمة  يجب ان تكون عند نقطة

ر عُبر عنه بتعبيان هذا التحفظ . معينة
ان دالة الموجة يجب ان تكون ذات بالقول 

Eginedقيمة محددة  valued 
وبما ان معادلة شرودنكَر هي معادلة •

تقة تفاضلية من الرتبة الثانية فان المش
يجب ان تكون محددة جداً ( ψ)   الثانية لـ 

اذا كانت المعادلة ممكن تطبيقها في كل 
ة وهنا يمكن اخذ المشتقة الثاني. الامكنة

وعليه )للدالة فقط اذا كانت مستمرة 
فسوف لاتكون هناك خطوات حادة فيها

غير مستمرة
ميلها غير مستمر

غير محددة القيمة
لانهائية ضمن مدى محدد
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ون فمثلاً عند اخذ المشتقة الاولى للدالة فان ميلها يجب ان يك
ع دوال اي اننا سنتعامل م(. اي لايوجد تغير فجائي فيه)مستمر 

موجة حقيقية

:تكون دالة الموجة حقيقية ومقبولة فقط اذا كانت* 

ان -ذات قيمة مفردة ، د-لها ميل مستمر ، ج-مستمرة ، ب-أ
تكون محددة

غير ان التحفظات القاسية اعلاه لحل معادلة شرودنكَر تجعل حلها
اي غير ممكنة لاي )Eحقيقي الا في حالات محددة من الطاقة 

(.قيم عشوائية

إلاوممكن ان تمتلك فقط طاقات محددة الجسيمةوبعبارة اخرى، •
.دالة الموجة لها ستكون غير مقبولة
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:مبادئ ميكانيك الكم 13.4•

.نظامان دالة الموجة تحتوي كل ماتريد تعلمه من النتائج المختبرية والتي يمكن اجرائها على ال

لجسيمة يمكن توضيح نظرية الكم بالاعتماد على التطبيقات المختبريةّ او بأستخدام نموذج ا•

ة الحرة كما ونحن اصلاً قد كتبنا حلاً لمعادلة شرودنكَر للحركة الانتقالي. الحرة في اتجاه واحد

( :2)انفاً وكانت حالة خاصة للحل العام للمعادلة ( 3)في المعادلة 

……………… (1)                      

p=kℏتشير الى ان الجسيمة لها زخم خطي         kوقد رأينا ان دالة الموجة قد اعطيت قيمة لـ 
 Bو Aوأحد المعادلات التي سنشرحها الان هي تلك التي تحتوي على المعاملات  



6
•Observables & Operators المراقبات و المشغلات للنظام

:قد كتُبت بالشكل التالي ( 1)لنفترض ان المعادلة •

.  وفي هذه الحالة يأخذ مشتقته الثانية( ψ)  هو حارس او عامل او متغيرّ يعمل على الدالة Hوهنا •

Hamiltonianهاميلتون -يلعب الدور الخاص في ميكانيك الكم ويدعى بـ حارس(    H)فالحارس 
.  كمالذي طوّر الميكانيك التقليدي بتحويله مباشرةً الى ميكانيك الWilliam Hamiltonنسبة للعالم 

H)فعند كتابة • ψ =  E ψ )فان معادلة شرودنكَر ستكون لها معادلة قيم حديّة

•Eigen value equation كما يلي:

•(Operator) (function) = (numerical factor) (same function)  ……..(3)

Hψ)ففي حالة • = Eψ )فان العامل العددي الى اليمين والذي يدعى بالقيمة الحديةّ للحارس
(  ديةوالتي يجب ان تكون نفسها في كلا الجانبين في معادلة القيمة الح)والدالة Eهو الطاقة

تكون دالة وفي حالتنا هذه ، الدالة الحدية س. ستكون الدالة الحديةّ التي تشير الى القيمة الحدية
E .الموجة التي تشيرالى الطاقة  
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ان اهم معادلات القيم الحدية هي تلك التي تأخذ الشكل التالي•

(Operator) (Wave function) = (observable) (wave function) =( energy) (wave function)  

(  ت النظامبمراقبا(الخصائص)والتي تدعى )والتي يمكن اعادتها بالنسبة للخصائص الاخرى . والتي تمثل معادلة شرودنكرَ

وبشكل عام تكتب المعادلة اعلاه بالترتيب التالي

• (Operator) (wave function) = (observable) (wave function). . . . . . (4a)     

:وتمثل كما يلي

Ȏψ = Оψ ………. ……………..……………(4b)

و الذي يمئل observable(O )والذي يشير الى الـ ( Hamiltonian Hمثل الحارس الهاملتوني )حارس ( Ȏ) وهنا 

.Eالطاقة 

(  مراقب النظام) Observableالذي يشير الى الـ operatorوكذلك الحارس ( ψ)  ومن ثم فاذا علمنا دالة الموجة 

.للنظام المطلوب دراسته، فاننا يمكن استنتاج ناتج اي مشاهدة للخاصيةّ او اي تأثير لتلك الخاصيةّ

الذي Operatorلمعادلة القيم الحديةّ المقابلة، فأول خطوة هي ايجاد الحارس  Oوذلك بأنتخاب العامل ( مثل طاقة الذرة)

.المعطىObservable( مراقب النظام)يقابل 

:ميكانيك الكم postulatesللزخم الخطي تكون احدى مسلمات فرضيات  Operatorوان هيئة الحارس 
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ومن ثم ( x)   ولاجل ايجاد قيمة الزخم الخطي الذي تملكه الجسيمة  او تؤثر به ، علينا مفاضلة دالة الموجة بالنسبة لـ 
:من معادلة القيم الحديةPّنأخذ الزخم 

بساطة وهو ب. احدى المسلمات الاساسيّة لميكانيك الكمهو ايضاً بالنسبة للموقع Operatorهيئة الحارس كما ان * 
(x)   الضرب بالاحداثي 

انفاً، فأن( 1)لاحد دوال الموجة للجسيمة الحرة المعطاة في المعادلة B = 0فمثلاً لنفترض انتخبنا 

فبنفس . A = 0ولكن لنفترض اننا اخترنا دالة الموجة وفيها . كما نعلم= Pحيث ان الزخم            
:الخطوات نجد ان
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:فبنفس الخطوات نجد ان. A = 0ولكن لنفترض اننا اخترنا دالة الموجة وفيها  •

لها نفس قيمة الزخم)         ( وقد اظهرت ان الجسيمة الموصوفة بدالة الموجة 

-ولكن الان لها زخم بأتجاه   ( ونفس الطاقة الحركية) x( الزخم  كمية

(متجهة وان الاشارة تعطي الاتجاه



5كم 

التطابق وتوقع القيم
Superposition and expectation of values
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، فما هي قيمة الزخم الخطي لتلك الجسيمة ؟A = Bلنفترض انه لدينا دالة موجة لجسيمة حرة فيها  •

:فأولاً تكون دالة الموجة هي. فأننا بسرعة ندخل في حل تلك المشكلةOperatorاذا استخدمنا تقنية الـ •

فنجد)      ( وهذه دالة موجة تامة او نموذجية وممتازة، بينما عند حلها بالنسبة لـ •

عند حدوث وهنا ليست معادلة قيم حديةّ بسبب ان الدالة في جهة اليمين تختلف عن تلك الاصلية، ف•

ان في حين. ذلك فأن ميكانيك الكم يطلب منا توضيح ذلك اي لماذا زخم تلك الجسيمة غير محدد

ني او الشرط التق)الزخم لم يكن غير محدد كلياً، بسبب ان جيب تمام دالة الموجة يكون حاصل جمع 

كلٍ لـ            و              وكما رئينا كلٍ منهما يشير الى حالة زخم محددة( الفني هو تطابق خطي
.على حدة
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:رمزياً كما يليSuperpositionفيمكن كتابة التطابق •

:وتوضح  كما يلي

حو ، ولكن نصف القياسات ستظهر بأنها تتحرك ن)         (اذا قيس زخم الجسيمة فأن قيمته ستكون •

.اليسار

ن حاصل جمع ونفس التوضيح يكون بالنسبة لدالة موجة كتبت بهيئة التطابق مثلاً اذا كانت دالة موجة تكو•

:لعدة دوال موجيةّ لزخوم خطيةّ مختلفة وقد كتبت بالهيئة التالية 

:هما معاملات فان ميكانيك الكم سيخبرنا ما يلي( 000و         و  )        حيث ان •

عندما يقاس الزخم، ان احدى القيم لـ                              و                            يمكن ايجادهما اذا -1

0وقعت فقط الدوال الحديةّ في التطابق

0سنجد انه لايمكن تحديد القيم المحتملة التي استنتجناها انها غير مطابقة-2

و   
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على وجه )            (     للمعامل   المربعفي سلسلة متتالية يتناسب مع mumintum1ان احتمالية قياس   -3

.ونفس الشئ للقيم الاخرى( الخصوص يتناسب لـ           اذا كان        معقد

فالقيمة المتوقعة observableمعدل القيمة لعدد كبير من المشاهدات يعطى بالقيمة المتوقعة للـ -4

Expectation value (   الرمز )                     : تحسب من دالة الموجة كما يلي:

:يليكماتعُرفobservable(O)للـالقيمةالمتوقعةفان(ψ)مطبعةموجةبدالةالنظاموصفاذا•

(.أي للقيم المشاهدة أي التي تم الحصول عليها تجريبيا)  Oيشير الى ( حارس)عامل رياضي هو ( Ȏ)    حيث ان •

13.5مثال  

احسب متوسط المسافة لالكترون عن نواة ذرة الهيدروجين•

:الحل 

السابق وان الاوبريتر المقابل للمسافة عن النواة يكون عملية ( 13.3)لقد حصلنا على الدالة المطبعة في المثال •

.rالضرب بالمقدار 
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•13.4(C) مبدء اللاتحديد: the uncertainty principle
لقد شاهدنا ان دالة الموجة للجسيمة تكون              ، وهي تشير الى حالة محددة للزخم الخطي، ولنجعلها تنتقل نحو اليمين•

.ولكن يمكن ان نسأل عن موقع تلك الجسيمة عندما تكون في تلك الحالة)       ( وبزخم •

، وفي هذه الحالة نجد(ψ*ψ)      ان توضيح بورن يجيب على هذا التساؤل بهيئة كثافة الاحتمالية •

ة ومن ثم فان الجسيمة لها احتمالي. ان كثافة الاحتمالية هذه ثابتة وقيمتها         وتكون غير مرتبطة بـ       •
.متساوية وهي نفسها في اي موقع وجدت

النصف الاول من ان ذلك . وبتعبير اخر اذا حُدد الزخم بدقة، يكون من غير المحتمل استنتاج موقع الجسيمة•
ي ان كما ان من احد مبادئ الكم ينص انه من غير الممكن تحديد زخم وموقع الجسيمة فمبدءهايزنبرغ  في اللاتحديد 

.واحد

الضبط فأننا بأنه اذا عُلم الموقع للجسيمة بالنصف الثاني منه وقبل شرح هذا المبدء بتفصيل اكثر علينا ان نناقش •
جرى كما وتكمتطابقة الدوال الحديةّ،لايمكن ان نجد اي قيمة للزخم، فالجدل اعلاه يقودنا الى فكرة تمثيل دالة موجة 

:يلي 

•



6

• اذا علمنا جسيمة في موقع محدد، فان دالتها •

ي الموجية يجب ان تكون كبيرة وتكون صفر ف

المواقع الاخرى كما في الشكل المجاور 

ان مثل دالة الموجة هذه يمكن ايجادها من •

جيب او )حاصل جمع عدد قليل من دوال الموجة 

ستعطي احتمال عريض كما في ( جيب تمام

من الصفحة التالية( a)الشكل 
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ان مثل دالة الموجة هذه يمكن ايجادها من حاصل جمع عدد قليل من •

ستعطي احتمال عريض كما في ( جيب او جيب تمام)دوال الموجة 
الشكل  المجاور وفيه  و الذي يمثل دالة موجة لجسيمة وقد حُدد 
ة موقعها بشكل مريض ولكن يمكن  ايجاده باخذ عدة متطابقات لدال
الموجة ولطول موجي محدد والذي يتداخل  تداخلا بناءً في مكان 

وكما نشاهد اذ كلما 0واحد ولكن تداخلا هداما في المواقع الاخرى
ر زادة المتطابقات  اصبح الموقع اكثر دقة وكما في المنحنى المؤش

و عليه  سنحتاج الى عدد غير محدد لايجاد دالة 21و  5و  2بـ 
0موجة لجسيمة محددة بموقع  محدد بدقة

الى صورة كم   تدعى علاقة Werner Heisenbergعندها توصل •
:كما يليزخم –عدم تأكيد موقع 

وهو انحراف معدل )يمثل الشك في الزخم الخطي )    ( حيث ان •
للزخم (root-meansquare, RMS deviation)) الجذر التربيعي

ي اي الانحراف  ف)هو الشك في الموقع )     ( و ( من متوسط قيمته 
RMSمن معدل الموقع اساساً نصف العرض للتطابق في الشكل
لك يشيران الى نفس الاتجاه في الفضاء وكذqو  pو   ( السابق

والزخم بموازاته اذ يكونان ( x)  بالنسبة للموقع على المحور 
yوالحركة على امتداد  ( x)  الموقع على ، بعلاقة اللادقةمحددان 

.لاتكون مقيدة او محددة او ممنوعةzاو   
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الموقع تلك التي تخصغير( كالطاقة مضروبة في الزمن)تطبق على عدد من المشاهدات الفيزيائية ( هايزنبرغ) ان علاقة 

(.قادمةوالتي سنواجهها في المحاضرات ال)اذ يتضمنان الطاقة والعمر الزمني وخصائص تتعلق بالزخم الزاوي والزخم 

309ص 13.6مثال •

.في الموقعمقدار الشك احسب ( 6ms-1-10)   هي ضمن 1.0gاذا كانت سرعة جسيم مقذوف كتلته •

:طريقة الحل 

.هو مقدار الشك في السرعة)         ( حيث ان ( )        من 𝛿Pخمّن •

)        (ثم استخدم المعادلة                                  لتقدير اقل شك في الموقع •

:الجواب 

:اقل شك في الموقع يكون •

•

•

:تعليق 

قدار الشك ان ذلك المقدار يعتبر مهمل للجسيمات بهذا الحجم، بينما، عندما تكون الكتلة هي بقدر كتلة الالكترون، فان م•
ف لايمكن في الموقع في السرعة للسرعة المعطاة، سيكون اكبر بكثير من ابعاد الذرة، وكذلك بالنسبة لاي مسار لمقذو

.ايجاد موقعه وزخمه في ان واحد

:مثال 

(2a0بعدها    )  خمن اقل شك في السرعة لالكترون في ذرة الهيدروجين •

•



6كم 

Quantum theory :

Techniques & Application 
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:مقدمة •

والاهتزازية Translationalالانتقالية : توجد هناك ثلاثة انواع من الحركة •
Vibrational والدورانيةRotational.

مهمة التي وتلعب الحركات الثلاثة دوراً مهماً في الكيمياء لانها تمثل السبل ال•
ركة انتقالية فمثلاً تعاني الجزيئات في حيزّ مغلق ح. تخزن الجزيئة الطاقة بها

ستكون عبارة عن اسهام في الطاقة Kinetic energyوان الطاقة الحركية 
اقة الدوران مستويات طفالجزيئات يمكن ان تدور وتنتقل بين . الداخلية للعينة

.وهذه الانتقالات هي التي تعطي طيف الدوران لتلك الجزيئاتالمسموحة

ضاً، وهي تشكل مخزن اضافي للطاقة اي: والاواصر بأمكانها ايضاً ان تهتز •
وان الانتقالات بين مستويات طاقة الاهتزاز تعطي اطياف الاهتزاز 

vibrational spectra.

كية وكذلك الالكترونات في الذرات والجزيئات تخزن الطاقة في طاقتها الحر•
بتأثرها مع ( potential energy)الانتقالية حول الذرة وفي طاقة الجهد 

.النواة وانجذابها نحوها

مساعدة كما اننا سنركز في دراستنا للكم على دراسة خصائص ميكانيك الكم ب•
.مجموعة من التقنيات الرياضية للتعامل مع هذه الانواع من الحركة
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Translational mationالحركة الانتقالية -1•
:يمكن وصف ميكانيك الكم للحركة الحرة بمعادلة شرودنكَر التالية •

تمثل دالة الموجةψو   h-barاو h-crossوتقراء ℏحيث ان  •

والحل العام للمعادلة السابقة هو 

( ) سنحصل على دالة موجة تشير الى جسيمة لها زخم خطي قدره B = 0فعند وضع 

سنحصل على دالة موجة تشير الى A = 0وعندما نجعل ( نحو اليمين)xبالاتجاه الموجب من    

حديده او وفي كلا الحالتين موقع الجسيمة لايمكن ت. جسيمة لها نفس الزخم ولكن متجهة نحو اليسار
تكون مسموحة، الطاقة Eومن ثم جميع قيم الطاقة kبينما جميع قيم .،لاحظ . استنتاجه تماماً 

.للجسيمة الحرة تكون غير مكممة

ذه و اللتي سنحتاجها في الاشتقاق في هالحرههي شكل اخر لحلول دالة الموجة للجسيمة  2المعادلة 

:المحاضرة
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•

The partical in a box   :14.1(a) 

ة يمكن ايجاد الطاقة المكممة حالما يتم تحديد مدى الحري

شكلة ولاجل توضيح هذه الصفة لنتصور الم. للجسيمة
mلـ جسيمة في صندوق لها كتلة قدرها   

 x = Lو   x = 0ومحصورة بين جدران عند     
صفر= وان طاقة الجهد في اي مربع داخل الصندوق 

ولكنها سترتفع الى اللانهاية عند الجدران كما في
.الشكل المجاور

(   V=0)فأن معادلة شرودنكَر للمنطقة بين الجدران والتي فيها الجهد 

تكون

سه، وتكون نفسها للجسيمة الحرة، وعليه فأن الحل العام يكون نف

:  فمن الملائم كتابة الحل بالشكل التالي
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:كل التاليوتكون نفسها للجسيمة الحرة، وعليه فأن الحل العام يكون نفسه، فمن الملائم كتابة الحل بالش•

•---------------------------------------(4)  

:هما متشابهتان ، اذا استخدمنا العلاقة التالية( 2و 4) المعادلة : ملاحظة

Bو Aوقد اختصرنا او دمجنا  جميع العوامل العددية في المعاملان •

اي عند )وفيها تكون الطاقة للجهد مالانهاية (  x > L)   و لـ ( x < 0)   والان لنتصور معادلة شرودنكَر لـ 

كن ، فان ابسط طريقة للتعامل مع هذه المنطقة بأن نفترض ان طاقة الجهد لاتكون لانهائية ول(الجدران

ً ( V)    نعتبرها كبيرة جداً ومن ثم سنسمح بأن نفترض  فان معادلة شرودنكَر . تصبح لانهائية لاحقا

:تكون

وبأعادة الترتيب•
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:ان الصيغة المقنعة لهذه المعادلة يمكن توضيحها كما يلي

لدالة الموجة هو تقعر ( التقوس)موجبة فهذا يعني ان الانحناء ( ψ)  اذا كانت المشتقة الثانية لـ 

حدث ( ψ)ولنفترض ان قيمة   ( .     ⌒)واذا كان سالباً فأن التقوس يكون محدبا ( ⌣)      

وان كانت موجبة في داخل مادة الجدران وعند الحافة الداخلية للجدار، فانه بما ان الجهة اليمنى من 

( ψ)     وستكون Eكبير جداً فانها بالتأكيد ستزيد على قيمة Vبسبب كون )موجبة ( 5)المعادلة 

ستنحني اسفلاً بسرعة نحو قيم ( ψ)    يكون موجب وكذلك  فإن الـ ( ψ)    ، فالتقوس لـ (موجبة

(x)   لانهائية كلما زادت 

ثم اذا (. قيقةفي موضوع ديناميكية الانظمة الد)ان ذلك يجعلها دالة غير  مقبولة طبقاً للفرضية التي افترضت 

فان دالة سالبة ايضاً على حافة احد الجدران فالمشتقة الثانية ستكون سالبة، ومن ثم( ψ)   كانت قيمة 

التي ستنخفض بسرعة الى قيم سالبة لانهائية و( ... طاقة الموجة)او بتعبير اخر ( أي السعة) الموجة 

ية وبما ان دالة الموجة لايمكن ان تكون موجبة او سالبة عند الحافة الداخل. تجعلها ايضاً غير مقبولة

. من اللانهايةVان هذه المتطلبات ستضيق بشدة كلما اقترب . فأنها يجب ان تكون صفراً هناكللجدران 
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: والصورة الكميةّ للمناقشة اعلاه ستكون كالاتي•

يكون 5ان الحل العام للمعادلة  •

هي حقيقية وطالما ان الحد الاول يزداد بدون حدود كلما ازداد exponentialsلاحظ هنا الـ •

•   (x)وان الطريقة الوحيدة التي نضمن بها دالة الموجة بان لاتصبح نهائية  هي جعل ،

A = 0     ومن ثم فإن دالة الموجة للحالة التي فيها ،x > Lستكون    :

(.x)   والتي تتلاشى اسُياًّ بأتجاه الصفر كلما زادت  قيمة •

الفرق بين (  2)و كتلة الجسيمة (1)معدل وصولها الى الصفر يعتمد على شيئين، لاحظ ان•
ً . (V-E)الـ  .وسنعود الى تأثير الكتلة لاحقا
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بح سريع فكلما اقتربت طاقة الجهد نحو المالانهاية فان التلاشي في دالة الموجة نحو الصفر يص•

.   يكون لا نهائي فان التلاشي يكون سريع ولا نهائي ايظاVوعندما   . ولا نهائي

x = Lعندما     ( ψ=  0) اذن •

ة فان دالة وبنفس الجدل يمكن تطبيقها على الجدار في جهة اليسار بالنسبة لطاقة الجهد اللانهائي•
فذلك يعني . x  =  0عندما      ( ψ=  0)  الموجة تتلاشى بسرعة في داخل الجدار اي 

ي لجسيمة ف(  شروط لدالة يجب ان تتحقق عند المواقع المحددة تلك)قد حددنا حدود مشروطة 

:تكون متوفرة فيهاصندوق الجهد الشروط التالية يجب ان 

ولكن بشروط    4فعند هذه المرحلة نحن نعرف ان دالة الموجة بشكل عام قد اعطية في العلاقة •

.يجب ان تتحقق والتي ذكُرت اعلاه
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B=ψ0، ان     4، فطبقاً للمعادلة x  =  0فتصور الجدار عند     •

Sinبسبب   ) التي تعني    B = 0اذن ψ0=0ولكن شرط الحد يكون   ( Cos 0 = 1و      0 = 0

:     ضمناً بأن دالة الموجة يجب ان تكون بالهيئة التالية

A = 0فالسعة عند الجدار الاخر تكون                              وهذه ايضاً يجب ان تساوي صفر اخذين 
والتي سوف ستتناقض مع توضيح بورن xعلى امتداد المحور xلكل  قيم  ψ=  0والتي ستعطي   

يجب ان تنُتخب ليكون فيها  KLاذن    (  بان الجسيمة يجب ان تكون موجودة ولو في مكانٍ ما)

SinkL=0   . وذلك يتطلب بأن يكونKL   احد مضاعفاتπ     .

و التي  Kوعليه فان فقط القيم المسموحة لـ ( π ,  2πƟ , 0 =... لـ   (   Sin Ɵ  = 0بسبب ) •

وكذلك تجعل    K = 0لايمكن لانها ستجعل n =1,2…. (n = 0حيث ان  KL=nπتكون فيها      

0=ψ في كل الامكنة او المواقع وهذا غير مقبول والقيم السالبة لـn  تغيرّ الاشارة لـSin nπx/L                      .

، فانه سيتبع ذلك بان الطاقة للجسيمة ستكون محددة 4يرتبطان ببعضهما كما في المعادلة Eو Kوان 

:  بالقيم

بأن دالة الموجة يجب ان ( المشروطة)فالطاقة لهذه الجسيمة تكون مكممة ناشئة من الحدود و القيود •

.تتحقق لكي تكون مقبولة طبقاً لاستيضاح بورن
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اد ثابت اذ يجب ايج. وقبل ان نناقش هذه النتائج بالتفصيل علينا ان نستمر في اتمام اشتقاق دالة الموجة

(Aوهنا كُتب )التطبيع 

:لتكون وحدة واحدة ( x)  ضمن جميع قيم )        ( وتم ذلك بضمان مكاملة 

:ومن ثم فان الحل الكامل للمشكلة يكون 

وفي بعض )وعدد الكم هو عدد صحيح (. n)  فالطاقات ودوال الموجة قد تم تسميتها بعدد الكم •

دعى وت: وان تلك المسميات تمثل حالة النظام ( الحالات الخاصة جداً يكون نصف عدد صحيح
والتي تحدد Enعبر التعبير التالي )الكم والذي يمكن حساب الطاقة التي تشير له او تقابله بعدد 

(دالة الموجة
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14.1مثال محلول •

طاقة ( ب)كم ستكون طاقة زخمه و ( أ( )حوالي على طول خمسة ذرات)nm 1.0وجد الكتروناً مرتبطا بجزيء ويتحرك على مسار طوله      •
.x = 0.2nmو    x = 0اثارة الزخم من تلك الحالة؟ وكم ستكون احتمالية ايجاد الالكترون بين   

: طريقة الحل •

E2ان طاقة اثارة الزخم ستكون . n = 1عندما ( أ)و m = meوفيها  ( 9a)    بأستخدام المعادلة • – E1 . ان توزيع الالكترون معطى بالمعادلة
9b) ) عندماn = 1             على ذلك المدى او المسارفستكون الاحتمالية الكليّة لايجاد الالكترون في الموقع المحدد ستشمل تكامل.

:الحل •

L = 1.0nmبالنسبة الى  •

E1=6.0 x 10-20اذن • J  و التي تقابل(36 KJ mol-1)  اذن فستكون طاقة اثارة الزخم هي  :

kJ mol-1 108: وهذه القيمة تقابل • (1,1 eV) 
:وبالنسبة للاحتمالية فاننا يمكن ايجادها من المعادلة •

.من ان نجد الالكترون في تلك المنطقة المحددة20من 1او بتعبير اخر احتمالية P= 0.05وهذه القيم تعطي    l=0.2nmو n=1حيث ان   •

:تعليق •

.كترونيةصندوق يعتبر نموذج عام عن التركيب الجزيئي، ويمكن استخدامه لايجاد قيم تقريبية لطاقات الانتقال الال-في–ان نموذج الكترون •

:  تمرين •

احسب طاقة الاثارة الاولى لبروتون محصور في منطقة مساوية تقريباً لقطر النواة•

•(m  10-15 .) احسب الاحتمالية التي يكون فيها البروتون بحالته الارضية الغير مثارة يكون موجوداً بينx=0.25L  وx=0.75L( . الجواب
0.18  600MeV)

•
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•b-14  خصائص الحلولThe properties of the solutions

:لجسيمة في صندوق يمكن تمثيلها كما في الشكل التالي(9b)و (9a)ان  اشكال دوال الموجة المعطات بالمعادلة  •

:وانه من السهل تمثيل اصل التكمم بشروط تصوريةّ•

ان كل دالة موجة على انها موجة واقفة •

ولاجل ابقائها في الحيزّ فان الدوال اللاحقة يجب •

.  بنصف طول موجيان تمتلك او تزيد •
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فة ان كل دالة موجة على انها موجة واق: وانه من السهل تمثيل اصل التكمم بشروط تصوريةّ•

ان. ولاجل ابقائها في الحيّز ان الدوال اللاحقة يجب ان تمتلك او تزيد بنصف طول موجي

م يزيد تقليص او تقصير الطول الموجي يؤدي الى حدة في تحدب المنحنى للدالة الموجية ومن ث

كون معرفاً فالزخم الخطي للجسيمة في الصندوق هنا لاي. في الطاقة الحركية للجسيمة الموصوفة

حديةّ هي موجة واقفة وليست دالة ( sinkx)    او محدداً جيداً، وذلك بسبب دالة الموجة 

في حين كل دالة Liner momentum operatorكما وضح سابقاً لحارس الزخم الخطي 

لزخم الدوال الحديةّ Superpositionموجة تكون صورة متطابقة 

وكذلك قياسات الزخم الخطي سوف تعطي القيمة( بسبب                                               )

النصف الاخر، هذا هو كم او تكمم ( -)                       نصف مرة والـ )                         ( 

وتنتقل مرة الهيئة الحديثة للميكانيك التقليدي بأن الجسيمة في الصندوق تجلجل بين الجدران

.الى اليمين ومرة الى اليسار

•

-
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تساوي لايمكن ان تساوي صفراً فان اوطأ قيمة للطاقة للجسيمة قد تكون صغيرة الا انها لاnوبسبب ان 

ولكنها ستكون(. كما هو مسموح لان تكون صفر في الميكانيك التقليدي)صفر 

-zeropointطاقة نقطة الصفر    تدعىان هذه اوطأ طاقة وغير ممكن ازالتها و• energy) ) ان

:مصدرها الفيزيائي يمكن توضيحه بطريقتين او بأسلوبين

محددة في موقع ضيق ( confined)مبدء اللاتحديد يتطلب امتلاك الجسيمة طاقة حركية اذا كانت : اولاً 

صفراً سيكون بسبب موقع الجسيمة لم يكن محدد تماماً،   فأن زخمها سوف لايكون.  جداً شبه محدد

 ً .  تماما

ولا مستمرة ولا (smooth)ونفس الشيء اذا كانت دالة الموجة صفر عند الجدران، ولكن لم تكن سلسة 

مة من صفر في اي مكان فانها اذن يجب ان تنحني وان الانحناء في الدالة يتضمن ماتمتلكه الجسي

.طاقة حركية

وان الفواصل بين مستويات الطاقة المتجاورة تعطى بـ•
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بين مستويات الطاقة المتجاورة تعطى بـالفواصل وان •

رة وتصبح كلما ازداد طول الصندوق وتكون الفواصل صغيرة جداً جداً عندما تكون الحاوية كبيتقلوالتي 

تبرية لها صفر عندما تكون الجدران متباعدة جداً فبالنسبة للذرات والجزيئات بالنسبة للادوات المخ

.حرية الحركة الانتقالية في اي اتجاه لذا يمكن اعتبار طاقتها الانتقالية غير مكممة

ستكون ( x)   وكثافة الاحتمالية عند : لايكون متجانس ان توزيع الجسيمة في الصندوق 

صغيرة كما في الشكل السابق اذ اظهر انعكاس من على   nفالتأثير يكون واضح وقاطع عندما تكون  

سيكيةّ، وذلك يعكس النتيجة الكلافان التوزيع يكون اكثر تجانساً عاليةوجه الجدار، وعند اعداد كم 

كم هذه ان نتيجة ال. بأن الجسيمة تتأرجح او تتردد بين الجدران، وبمعدل متساوي عند جميع النقاط

رقم كبير ) مة أي تساوي تقريباً تلك المستنتجة في الميكانيك التقليدي عندما يكون عدد الكم عالي القي

 =(n وهي خاصية تدعىCorrespondence principle وتعني يتلاقى الميكانيك التقليدي مع

.ميكانيك الكم عند اعداد كم عالية
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14.1(c)  الحركة بأتجاهينMotion in two dimensions

عندما تكون الجسيمة محصورة في او متواجدة على سطح رباعي وطول الضلع له هو  •
(L1) وبالاتجاه ــ-x وL2في الاتجاه ــــy فان طاقة الجهد ستكون صفر في ،

:هيجميع الامكنة عدا الجدران حيث تكون لانهائية، فستكون معادلة شرودكَر لهذا النظام

•

اي انها ستكتب كمايلي             ( yو  x)     لكلا هي دالة )      ( وان •

.

لى اكثر وهي معادلات التفاضل التي تحتوي ع)في بعض الحالات معادلات التفاضل الجزئي •

تجزيء ، والتي تسمح بفصل المتغيرّاتيمكن حلها ببساطة باسلوب يدعى ( من متغيرّ

ان ان هذه الطريقة يمكن. المعادلة الى معادلتين تفاضليتين وكل واحدة تحوي متغيرّ

، (ضرب متجهي)كحاصل دالةتستخدم في هذه الحالة، كما سنرى عند كتابة دالة الموجة 
:فقط  و كما يلي yوالاخر على    xاحدهما يعتمد فقط على   
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:وبما ان •

:ونفس الشيء   لـ            فالمعادلة تصبح( . 𝑥يعتمد فقط على   Xلان  )•

:سنحصل على X Yوبالقسمة بـ •

لة و ان                والان بالنسبة للخطوة الاساسية          تكون مستق:                 حيث ان•

)          (.فانه فقط من المحتمل ان يتغيّر الحد y، حتى وان تغيّر yعن  
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بعبارة و)      (. ولكن حاصل الجمع لكلا الحدين يكون ثابت، واذا لم يتغيرّ الحد •

م يكون ثابت ايضاً ومن ث)        ( يكون ثابت ونفس الشيء ( ) اخرى   

:فانه يمكن كتابة 

•

وفيها                                   ان كل معادلة من تلك المعادلات هي نفسها كتلك بالنسبة لمعادلة •

وبدون توسع في الحسابات كما ( 9)شرودنكَر في صندوق الجهد، والان يمكن ترتيب الناتج في المعادلة 

:يلي
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:سنحصل علىوبما ان              •

و    :                     وفيها قيم اعداد الكم المسموحة هي •

:والشكل ادناه هو تمثيل لقسم من تلك الدوال . وبشكل مستقل على الاخر•
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•

:وفيها قيم أعداد الكم المسموحة هي

وبشكل و        

.  مستقل على الأخر

وال  والشكل المجاور هو تمثيل لقسم من تلك الد•

(:3-14) شكل •

دوال الموجة و التمثيل الكنتوري لجسيمة •

مقطع  aمحصورة على سطح مربع و فيه  

للدالة          و (c)لـلدالة            و  

•((e         للدالة

•
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ة الموجة الحالة الثلاثية الاتجاهات للجسيمة في الصندوق الحقيقي يمكن معالجتها بنفس الطريقة ودال•

.وان الطاقة ستملك حد إضافي آخر(    (zيكون لها عامل أخر بالنسبة لـلاحداثي 

:فأنواحد الصور للحلول المهمة عندما يكون السطح مربع أي فيه                و •

:فبعد التعويض سنحصل على و و و             :            فتصور الحالات•

لطاقةفأنهما يمتلكان نفس ا( وهنا اثنتان)دالة موجة فالنقطة التي يجب ان تلاحظ هنا في حالة أكثر من •

= L2
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ريحة فأنهما يمتلكان نفس الطاقة كما في الش( وهنا اثنتان)فالنقطة التي يجب ان تلاحظ هنا في حالة أكثر من دالة موجة •

وفي هذه الحالة يمكن ان نقول ان الانحلالالتوالد أو التضاعف أو ( degeneracy) ان هذه هي شروط الـتوالد . السابقة

.يتكرر مرتانالمستوى ذي الطاقة                              

.في مستويات الطاقة يعود إلى التماثل في النظامdegeneracyان حدوث الانحلال أو الـ  

:  يمكن تمثيلهما كما في الشكل التالي ( و            )                فالدالتان المنحلتان •

لاحظ انه يمكن . في بئر مربعيمثل الدالة( c)الشكل وتمثيلا للدالةb))شكل يمثل تمثيلا كنتوريا وفيه الشكل 

ان . لي، وانه بإمكاننا  القول إنهما يرتبطان ببعضهما بواسطة تحول تماثتحويل الأول إلى الأخر بمجرد تدويره بزاوية 

الدالتان هاتان هما أيضا منحلتان لامتلاكهما نفس الطاقة
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• وبسبب كون المستوى مربع•

لى فانه بالإمكان تحويل الواحد إ

ر الأخر بكل بساطة وذلك بتدوي
كما في 90̊المستوى بـزاوية 

.الشكل المجاور

هذه الحالة غير ممكنة عندما •

يكون المستوى غير مربع 
وعندما يكونا         و          

وسنرى عدة .  غير منحلتين•

أمثلة على الانحلال عندما 

جزيئةنطبق ذلك على 
.  الهيدروجين
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• (Quantum Leaks) تسرب الكم  ( ب) 14.1

فاذا لم ترتقي طاقة الجهد للجسيمة إلى ألما لانهاية فإنها إذن ستكون في جدران الصندوق أو•

في موضوع الجسيمة في صندوق، والتي (    6) الحاوية، وذلك سيقود النقاش إلى المعادلة رقم

فإذا كانت الجدران رقيقة جداً، فهذا   non–zeroتسمح بأن تبقى دالة الموجة بأن لا تساوي صفر 

متناهي في بسماكة الجدار ال)يعني طاقة الجهد ستهبط إلى الصفر ثانية بعد قطع مسافة صغيرة جداً 

سي ( الرقة ُُ هبوطها إلى الصفر )لدالة الموجة يوقف ( exponential decay)ولكن التلاشي الأُ

ذبذب ثانيةً مما يتيح لها بان تصل الى الجهة الثانية من الجدار نافذتا الى الخارج ثم تبدأ بالت( بسرعة

.بصورة متشابهة لدوال الموجة داخل الصندوق و لكن بسعة تذبذب اقل



8كم 

(Quantum Leaks) تسرب الكم  ( ب) 14.1
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• (Quantum Leaks) (ب )  تسرب الكم 14.1  

فاذا لم ترتقي طاقة الجهد للجسيمة إلى ألما لانهاية فإنها إذن ستكون في جدران•

(  6) الصندوق أو الحاوية، وذلك سيقود النقاش إلى المعادلة رقم

اوي في موضوع الجسيمة في صندوق، والتي تسمح بأن تبقى دالة الموجة بأن لا تس

ى فإذا كانت الجدران رقيقة جداً، فهذا يعني طاقة الجهد ستهبط إل  non–zeroصفر 

ولكن ( بسماكة الجدار المتناهي في الرقة)الصفر ثانية بعد قطع مسافة صغيرة جداً 

هبوطها إلى الصفر )لدالة الموجة يوقف ( exponential decay)التلاشي الأُ سي 

م تبدأ مما يتيح لها بان تصل الى الجهة الثانية من الجدار نافذتا الى الخارج ث( بسرعة

.بذب اقلو لكن بسعة تذبالتذبذب ثانيةً بصورة متشابهة لدوال الموجة داخل الصندوق 
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•

:  كما في الشكل المجاور •

(:  5-14)شكل •

ر ترتطم على حاجز من جهة اليسايمثل جسيمة•

ولها دالة تذبذب، ولكن داخل الحاجز او الجدار 

، فاذا E>Vتتلاشى دالة الموجة أسُيّاً بالنسبة لـ 

كان الحاجز رقيقا فان دالة الموجة سوف 

لاتساوي صفر عند الوجه المقابل للحاجز او 

. يمةالجدار، وعليه ستتذبذب من هنك تبعا للجس

و هذا يعني الجسيمة او جزء من طاقتها قد 

قى وهنا تم تمثيل الجزء الحقي) اخترق  الحاجز 

(من الدالة

وهذا يعني ان الجسيمة يمكن ان نجدها خارج •

ة الصندوق  حتى ولو لم تمتلك الطاقة الكافي

(.طبقاً للميكانيك التقليدي)للهروب 

هذا التسرب عبر المناطق الغير مسموحة •

Forbidden zones)( )حسب ( الغير ممكنة

(  (tunnelingبـالتنفيق الميكانيك التقليدي يدعى 

.
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.  وتبين كيف ان ذلك يعتمد على كتلة الجسيمةtunnelingان معادلة شرودنكَر تتيح لنا حساب مقدار الـ •

اعلاه يمكن مشاهدة ذلك، طالما ان دالة الموجة تتلاشى اكسبونشلي ( 6)وفي الحقيقة من نتائج المعادلة 

لقدرة في ، فان الجسيمات الخفيفة لها ا)         (أسُياً داخل الجدار ويكون معدل هذا التلاشي معتمداً على 

.التوغل عبر الحاجز اكثر من تلك الثقيلة

يمات جداً مهم بالنسبة للالكترونات واقل اهمية بالنسبة للبروتونات وللجسtunnelingان التنفيق ا والـ •

 ً ى قدرة تعتمد عل( بعض معدلات سرع التفاعل)هناك عدد من التأثيرات في الكيمياء مثل . الاثقل  ايضا

(.deuteron)او التنفيق بسهولة اكبر من الديترون tunnelingالبروتون على الـ 

•

file://upload.wikimedia.org/wikipedia/commons/1/1d/TunnelEffektKling1.png
file://upload.wikimedia.org/wikipedia/commons/1/1d/TunnelEffektKling1.png


5• دام ان نوع المشكلة التي يمكن حلها باستخ•
الافكار اعلاه، وذلك من خلال مثال لجسم 

(  كأن يكون الكترون او بروتون)مقذوف 
ا ويسقط من اليسار على منطقة تزداد فيه

.  ةطاقة الجهد بشدة من الصفر الى المالانهاي
 Lتبقى ثابتة على طول المسافة Vوقيمة 

.ومن ثم تهبط الى الصفر ثانيةً 

ان هذا النموذج يمثل مايجري عندما تطلق •
الجسيمات على رقاقة نموذجيّة من المعدن

ويمكن ان نسأل عن نسبة . او الورق
اق الجسيمات الساقطة التي تستطيع اختر

ن الحاجز عندما تكون طاقتها الحركيّة اقل م
V فستكون الاجابة حسب الميكانيك ،

التقليدي صفر اي لاتستطيع اي من 
.الجسيمات ان تخترق الحاجز
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يوضح المنطق التي تكون : 14.6شكل •

ب عملية حساطاقة الجهد فيها ثابتة في 

طة اذ تضهر موجة ساق.احتمالية التنفيق

على الجدار من جهة اليمين وقوية 

و ( مقدارها             زخمها نحو اليمين

)           (           موجة منعكسة  اضعف      

في)          ( و موجة نافذة جدا ضعيفة 

. المنطقة الثانية من جهة اليمين

وطريقة حساب الاحتمالية هذه ستكون•
:كما يلي 

ة نكتب معادلة شرودنكَر لكل منطق-1•
.  ذات جهد ثابت

كتابة الحلول العامة لكل منطقة -2•

انفاً للمناطق التي( 2)بأستخدام العلاقة 
للمناطق ( 6)والمعادلة (   V<E)  فيها 

(.V>E)  التي فيها 
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:ايجاد المعاملات وذلك بجعل -3•

•(a ) ان تكون دالة الموجة مستمرة عند حدود كل
(.zone)منطقة 

•(b ) ان تكون المشتقات الاولى لكل دالة موجة
 zoneمستمرة عند حدود المناطق 

boundaries.

ان الاجراءات التي ذكرناها موضحة في الشكل •
:التالي والمثال ( 14-6)

ة استنتج تعبير تجد منه الاحتمالي14.2مثال •
والتي ستخترق Eوالطاقة mلجسيمة لها الكتلة 

فيه    ) Vحاجز طاقة الجهد والذي له الارتفاع 
V> E ) وعرضL عندما تسقط عليه من جهة
.اليسار

:طريقة الحل •

ة اتبع الخطوات اعلاه، فالمناطق الثلاثة موضح•
ولايوجد هناك حواجز اخرى الى ( 6)في الشكل 

جهة اليمين لتعكس الجسيمات الى الوراء 
ولاتوجد هناك جسيمات تملك عزم الى اليسار 

.في تلك المنطقة

•

يبين دالة موجة وفيها ان يكون ميلها يجب ان يكون : 7شكل •
مح ان شروط الاستمرارية تس. مستمر عند حافتي الحاجز او الجدار

لنا من ربط دوال الموجة في المنطق الثلاثة و من ثم يمكن 
لول الحصول علاقات رياضية بين المعاملات  التي تضهر في الح

.لمعادلة شرودنكر

•



8
•

•

:الاجابة •

:  الحلول العامة للمناطق الثلاثة هي •

•

، اذن سنجعل   Cوبما انه لاتوجد جسيمة بزخم سالب في المنطقة •

•C' = 0 .تتناسب مع المقدار        فان احتمالية الاختراق

بوالاحتمالية للاختراق نسبة الى احتمالية التصادم والتي تتناس

:مع            ستكون •
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:ان شروط الحدود للمناطق هي كما يلي •

:وذلك يعطي ( )  حيث ان •

.ادناه( 13)وحل المعادلات الانية الاربعة اعلاه،   كما في المعادلة •
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:تعليق •

يكون سالباً ولها خصائص تصبح منفذة لبعض القيمVهي المنطقة ذات الجهد Aالمنطقة •

وذلك يحاكي كون الطلاء على العدسة اذ يتم اختياره بأن له معامل انكسار وسماكة :  Eلـ •

.الساقط عليه( لجزء من الضوء)تكسبه صفات بأن يكون شفاف للضوء 

:ان المثال اعلاه اظهر ان احتمالية الاختراق عبر الحاجز ستكون •

:وعندما يكون الحاجز عالي وطويل ستكون النسبة •
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ي • :اعلاه وسيكون 13الاول سيطغى على الثاني في المعادلة ( الاكسبو نانشال)فان الحد الأسُِّّ

:وفي هذه الحالة فان الاحتمالية ستكون •

على الجذر التربيعي لكتلة الجسيمة (  Exponentiallyاكسبوننشالي)تعتمد أسُياً Pوعليه فأن •

( ً .Lوكذلك على طول الحاجز ( كما ذكرنا انفا
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كل أي بمعنى ان  في المعادلة اعلاه يمكن تقريبها للش)فبالنسبة لحواجز عالية وعريضة •

:التالي

•
.  m1/2ع  فان احتمالية النفاذية ستنخفظ بشكل أسُي مع زيادة سماكة الحاجز وم•

بر فهذا يعني ان الجسيمة ذات الكتلة الاخف لها احتماية التوغل والاختراق اك

.  من تلك الاثقل

و بشكل muonsوهذا يعني ان التنفيق بالنسبة للالكترونات و الميونات •

.متوسط للبروتونات و اهمية مهملة للجسيمات الاثقل



Vibrationalالحركة الاهتزازية 14.2• motion
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