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Abstract 

Reinforced concrete beam with shape memory alloy rebar (SMA) is 

a new type of smart beam that is an important part of smart seismic 

structural systems developed to decrease the effects of earthquakes while 

maintaining approximately the same load carrying capacity as compared 

with conventional concrete beams. Shape memory alloy rebar has the 

ability to recover its normal shape after exposure to loads by removing 

loads or exposure to heat, and this property is so important in terms of 

enhancing seismic structural performance. In this thesis, an experimental 

investigation is carried out to study concrete beams for two effective 

types of loads, monotonous loads and repeated loads and the behaviour of 

normal reinforced concrete beams  

The experimental program tests eight normal beams with dimensions 

of 1450mm×250mm×150mm. The specimens are divided into three 

groups according to the percentage of SMA rebars that reinforced beams 

in bottom longitudinal direction. Each group included four beams, two as 

reference beams and two as variations  which had reinforcing details 

similar to the other. The two reference beams are reinforced with steel 

bars in the longitudinal direction representing flexural reinforcement, 

which acts as control beams in the three groups. The first group has a 

percentage of the SMA rebars in flexural reinforcement, 25% of the total 

flexural reinforcement. The second group beam has a percentage of the 

SMA rebars in flexural reinforcement, 50% of the total flexural 
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reinforcement. The third group beam has a percentage of the SMA rebars 

in flexural reinforcement, 75% of the total flexural reinforcement. For the 

three groups, one beam was tested by monotonic load and compared to a 

reference that tested by monotonic load, and last beam is tested by 

repeated load within a specific protocol and compared by a reference 

beam that tested also by repeated load  

The experimental results showed that the ultimate load decreased by 

using SMA bars in (25%, 50%, 75% ) of total flexural reinforcement 

about (2.66,18.93, 44.66%) respectively,  in the case of monotonic 

loading and (9.825%, 21.776%, 42.78 %) in case of repeated loading. The 

deflection  increased  by using SMA in (25%, 50%, 75% ) percentage of 

total flexural reinforcement about (14.45%, 19.18%, 3.491%) 

respectively, in case of monotonic loading and (18.8%, 6.213%, 3.084%) 

in case of repeated loading. The ductility increased by using SMA bars in 

(25%, 50%, 75% ) of total flexural reinforcement about (37.446%, 

92.4%, 18.116%) respectively,  in case of repeated loading,  while in case 

of monotonic loading, ductility increased by using SMA bar in (25%, 

50%, 75%) of total flexural reinforcement about (32.05%, 73.89%, 

3.236%). The Absorbed energy increased by using SMA bars in (25%) of 

total flexural reinforcement about (5.15%, 12.24%) in case of monotonic 

and repeated loading, respectively, while by using SMA bars in 

(50%,75%) of total flexural reinforcement in case monotonic loading,  

Absorbed energy decreased about (9.26%, 42.48%), and in case of 

repeated loading it decreased about (14.55%, 28.08%). The Nitinol alloy 

had a positive effect in reducing distortions, as well as a relative return of 

the beams to its original place. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General  

      For safety purpose, concrete structures reinforced with traditional steel 

are typically designed so that seismic performance is determined by the 

amount of energy dissipated via the yielding of steel reinforcing bars. It is 

true that plastic deformation can help disperse seismic energy and save a 

building from collapsing, but this comes at the expense of leaving more 

permanent residual deformation that compromises the building's safety and 

usefulness (Hossain, 2013).  

    Many buildings in the areas hit by the 1985 Michoacan (Mexico) and 

1994 Northridge (United States) earthquakes had to be torn down and 

rebuilt after suffering substantial irreversible deformation beyond the scope 

of repair. More than one hundred RC bridge piers suffered permanent 

deformation of greater than (1.75 %) during the 1995 Hyogo-Ken Nanbu 

earthquake (Kobe, Japan), forcing the authorities to dismantle and rebuild 

the structures because of the difficulty of straightening them (Ramirez and 

Miranda, 2012). In addition, 240,000 building structures suffered partial 

collapses, resulting in an estimated economic loss of between $50 to $100 

billion (US) (Comartin et al., 1995; Eguchi et al., 1998 ). 

 

  

Figure (1-1): Collapse of the RC 6story building (Shiohara, 2017) 
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       There was another big earthquake in northern Chile in 2010 with a 

magnitude of 8.8 on the Richter scale and a related tsunami that damaged 

80 out of 3000 buildings (>10 storey), resulting in an estimated $30 billion 

in economic loss (Wen et al., 2011). In 2011, Japan was hit by the Tohoku 

earthquake, which had a magnitude of 9 on the Richter scale and caused 

powerful tsunami waves that caused 129,225 buildings to collapse, 254,204 

buildings to "half collapse," and 691,766 buildings to be partially damaged 

(National Police Agency of Japan 2012). 

     In 2017, an earthquake measuring 7.4 on the Richter scale occurred in 

Halabja city, located in the Sulaymaniyah province in Iraq, and its center 

was in the Iranian province of Kermanshah. The Iranian government 

announced that hundreds of infrastructure had collapsed and eight villages 

had been flattened, while the Iraqi government announced that a 

Darbandikhan dam had been damaged, and hundreds of buildings in the 

provinces of Sulaymaniyah and Diyala (Wikipedia). 

       To prevent this kind of damage, there is an urgent need to construct 

smart structures; the academic and structural science community favored a 

performance-based seismic system design  in which a building's seismic 

performance would stay within a range of defined limits even when ground 

motion excitation, protecting people inside (via large deformation) and 

restoring the building's original form and function via re-centering, (Jason 

McCormick et al., 2008). The above performance-based seismic design 

would be focused on minimizing the residual sideways deformations by 

utilizing re-centering devices, such as post-tensioned re-centering sensors

(Priestley et al., 1999; Valente et al., 1999), passive energy dissipating 

devices, such as optimized mass and optimized liquid dampers (Clark et 

al., 1995; Symans et al., 2008), and smart materials such as shape memory 

alloys (SMAs) (Alam et al., 2009). 
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1.2 Smart structures: 

        Smart structures are a new design concept made possible by 

technological and scientific advancements in the field of materials 

engineering. A structure is said to be smart if it is capable of sense or detect 

an applied load or displacement and then respond in such a way as to 

reduce the amount of deflection demand and the damage that results from 

this. A network of sensors and actuators is used to provide the intelligent 

structure with the ability to detect and respond to its environment. When 

compared to conventional servomechanisms, the hardware requirements 

and response times of this architecture are much more manageable (Banks, 

et al., 1996). A variety of materials are utilized as actuators with smart 

system architecture. Most of these intelligent materials are ( Clarke, et al., 

2009): 

1- Piezoelectric (PZL) layers. 

2-  Electrostrictive (ER). 

3-  Magnetorostrictive (MR) 

4-  electrorheological fluids and solids. 

5-  shape-memory alloys (SMA), this is the subject of this thesis. 

 

   Recent studies investigate man-made and natural materials with unusual 

properties, known as smart materials, and systems that can spontaneously 

adapt to environmental changes, known as adaptive systems. This has led 

to the development of the smart structure concept, in which smart materials 

are integrated into a structure to make it smart (Cheng, F. Y., et al. 2008). 

 

1.3 Shape Memory Alloy: 

        SMA is a one-of-a-kind material due to its remarkable capacity to 

recover its original shape after being significantly deformed. By using 

SMAs as reinforcing bars in an RC construction, the building will be better 
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able to absorb seismic forces and return to its original shape with minimal 

damage (Alam et al., 2008; Saiidi and wang, 2006).SMA is one of the 

most useful parts of smart metals. Because of the development of the 

utilization area, SMAs, whose popularity is growing quickly, have become 

more easily accessible due to alloys like NiTi (Youssef et al., 2008). 

          Nickel-Titanium Alloys (NiTi) are a special class of metal that 

exhibit a number of distinctive features, including the capacity to recover 

significant deformation with little permanence of the residual strain, by up-

heating (shape memory effect) or unloading (superelasticity effect ). A 

form of SMA known as Superelastic Nitinol has the unusual capacity to 

withstand huge strains of up to 6 8%, as well as having great strength, 

significant fatigue resistance, and high damping. The superelasticity is one 

feature that makes these materials attractive for use in passive vibration 

control systems. When SMA is deformed, it transforms between its two 

stable phases, austinite and martensite, a phase change known as a "solid-

to-solid" phase transformation. Typically, martensite is stable under high 

stress, but austenite is stable under low stress; nevertheless, when nitinol is 

loaded, austenite transforms into martensite. After being unloaded, the 

martensite will change back into its original parent phase, which is 

austenite (DesRoches et al., 2004). The shape of the recovery indicated in 

Figure (1-2). 

 

1.4 Optimum use of SMA in concrete beams: 

    Beam structures are an important type of building part that construction 

workers and some types of engineers need to know about. These structures 

are significant for transferring weight and ensuring that a building's 

foundation is firmly set in the ground. Overhanging, fixed, trussed, 

continuous, and simply supported beams are some of the most common 

types of beam structures(Ballio, et al., 1983) . The urgency of using smart 
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Figure (1-2): Three-dimensional stress,strain and temperature diagram 

showing the deformation and behavior of  NiTi SMA (DesRoches et al., 

2004). 

 

buildings has recently increased, with more resistance to unusual 

conditions such as earthquakes and explosions. Important parts of buildings 

on this side are columns, beams, slabs and areas of connection (Song, et 

al., 2006). 

             The smart beam is one of the parts of the smart structure and the 

beam is considered smart when its internal or external structure is added 

parts that help it resist abnormal conditions. An example is the beam 

enhances the beam with the bars of the memory alloy to give a lengthy 

failure if it is exposed to a sudden load. As an example, the Pesoceramic 

Vibration Control Operator System is added and is a frequency field 

technique to achieve strong control performance and others (Shahverdi, et 

al., 2016). An analytical study has shown that it works very well to mix 

super elastic SMA bars (nitinol bars) including some steel reinforcement in 

a reinforced concrete beam (Bajoria, et al., 2016). 

 

1.5 Repeated load 

           Offshore structures, bridge girders, foundations, Pile caps, and 

transfer girders in high-rise buildings are just a few examples of massive 
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structural engineering applications that have been subjected to repeated 

load. Throughout their service life, beams may experience anywhere from a 

few thousand to a few million load cycles (Teng, et al., 1998) shown in 

Table (1-1). It is possible that the repeated load will consist only of 

compression (cyclic axial compressive loading) (AlSulayfani, et al., 2010; 

Lam, 1979), or it may take the form of compression tension (reversed 

loading) (Jurcevic, et al., 1990) shown in Figure (1-3) and Figure (1-4). 

 
Table (1-1): Fatigue cycles spectrum with corresponding structures (
 Isojeh, et al., 2017) 
Low-Cycle Fatigue 
(0  103 
cycles) 

High-Cycle Fatigue 
(103  107 
cycles) 

Super-High-Cycle 
Fatigue 
(107  5 x 108 
cycles) 

- Structures subjected 

to earthquakes 

- Structures subjected 

to storm 

-Bridges 

- Airport pavement 

- Wind power plants 

- Highway pavement 

- Concrete railroad ties 

- Mass rapid transit

structures 

- Sea structures 

- Machine foundations 

 

  

Figure (1-3): Load history for compression repeated load (Zhang, et al., 

2019) 
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Figure (1-4): Load history for cyclic load (Ibrahim and Abdulkhalik, 

2017) 
 

1.6 Research Objectives 

     The overall objective of the research is to configure smart concrete 

beams reinforced with smart materials. To achieve this objective, the 

project has been subdivided as follows  

1- Review the developments in concrete beam systems over the 

coming years and the variables that affect how SMA material 

responds. 

2- The expremental test involved casting reinforced concrete beams 

by partially replacing the normal reinforcement rebar with shape 

memory alloy rebar SMA. 

3- Study the tested beam with different replacement ratios of (25%, 

50%, and 75%) reinforcement rebar by SMA bars under 

monotonic loading. 

4- To study the tested beam with different replacements of 

reinforcement rebar by SMA bar (25%, 50%, 75%) under 

repeated loading. 
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1.7 Research Justification 

       In the past, many studies were conducted on smart structure systems in 

seismic systems and smart materials such as SMA were used in analytical 

and theoretical ways, but most of them focused mainly on colomn-beam 

joints as well as columns. While studies related to the structural behavior of 

concrete beams are few and not comprehensive, most of them have used 

theoretical methods. 

1.8 Layout of the Study 

 Chapter one presents a general introduction about the smart 

structure and smart material. It also describes the aims of the study. 

 Chapter two includes a summary of relevant literature, a description 

of the systems used in SMA design, an outline of the pseudo elastic 

reaction of SMA, and a discussion of the material's potential 

applications in building construction. 

 Chapter three describes the methods employed and the 

characteristics of the materials tested. Information about the test 

beams, concrete, and apparatus, is provided as well. 

 Chapter four presents an analysis and discussion of experimental 

data gathered from testing beams. 

 Chapter five discusses some conclusions and makes some 

recommendations for future research. 


