

Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala

College of Veterinary Medicine

Study on Multiple Drug Resistance of *Klebsiella* pneumoniae Isolated from Human and Domesticated Animals

A Thesis

Submitted to the Council of the College of Veterinary Medicine University of Diyala in Partial Fulfillment of the Requirements of the Degree of M.Sc. in Microbiology

Submitted By

Hadeel Mudheher Oraibi

B.Sc Biology Science/ College of Science, Diyala

Supervised by

Prof. Dr.

Abdulrazak Shafiq Hasan

Ph.D. Med. Microbiology/Virology 2020 A. D. Prof. Dr.

Amer Khazaal Saleh Ph.D. Virology 1442 A.H.

بيب م الله الرّحمن الرّحب م فتعال (اللي المكرك الحق والمتعجل بالقراك مس قبل لاک يقفى لاليکن وجميہ وقل رہے نردنى بحلسا 🖌 صدق الله العظيم سورة طه الآية (114

Supervisor Certification

We certify that thesis entitled (Study on multiple drug resistance of *Klebsiella pneumoniae* isolated from human and domesticated animals) was prepared by (Hadeel Mudheher Oraibi) under our supervision at the Department of Microbiology, College of Veterinary Medicine, University of Diyala, as a partial fulfillment of the requirements for the Degree of Master of Science in Veterinary Microbiology.

Signature	Signature
Supervisor	Supervisor
Prof. Dr. Amer Khazaal Saleh	Prof. Dr. Abdulrazak Shafiq Hasan
College of Veterinary Medicine	College of Medicine
University of Diyala	University of Diyala
/ / 2020	/ / 2020

In view of the available recommendation, I forward this thesis for debate by the examining committee

Assist.Prof.Dr. Khalid Ibrahim Abd Alkhazraji Vice Dean of post graduate studies and science affairs College of Veterinary Medicine University of Diyala

/ / 2020

Committee Certification

We the members of the examining committee, certify that after reading this thesis and examining the student **Hadeel Mudheher Oraibi** in its contents, we think it is adequate for the award degree of Master of Science in – Veterinary Microbiology

Prof.Dr. Abbas Aboud Farhan

Chairman

Date :2020/ /

Prof.Dr.

Dr. Nadhim Ghazal Noaman

Member

Date : / /2020

Prof. Dr.

Abdulrazak Shafiq Hasan Member and Supervisor Date: / / 2020

Prof. Dr. Amer Khazaal Saleh Head of Department Date: / / 2020 Assist. Prof.Dr.

Dr.Bashar Sadeq Noomi Member

Date : / /2020

Prof. Dr.

Amer Khazaal Saleh Member and Supervisor Date: / / 2020

Prof.Dr. Talib Jawad Kazim Dean Date: / / 2020 To the one who has the enlightened thought, who proudly bore his name, my dear father.

To the source of tenderness, the secret of existence, my big love mom.

To the one who has patience with me and continuously inspired me to fulfill my dreams for my loving and supportive husband.

To the most beautiful thing in my life my children.

To those who looked forward to my success, my brothers.

To all my relatives and loved ones.

Hadeel M. Oraibi

Acknowledgements

Thanks and gratitude first and foremost to ((ALLAH)) Who honored me by completing this studies.

I am heartily thankful to my supervisor Prof. Dr. Abdulrazak Shafiq Hasan for Suggesting the study, his guidance throughout my study, without his efforts this work cannot be achieved.

I would like to express my gratitude to my supervisor Prof. Dr. Amer Khazaal Al-Azzawi for all his guidance.

Thanks and appreciation to the dean of Veterinary Medicine college Prof. Dr. Talib Jawad Kazim, for all his support for post graduate students

I would like to express my thank to my role model Prof. Dr. Nazar Jabbar, Al-Khafaji, for all his guidance and for his support for my

Finally, I would like to thank everyone who helped me, and apologies to those I forgot to mention.

Summary

Antimicrobial resistance is a global threat, with deaths associated with Antimicrobial resistance(AMR) infections are expected to exceed 10 million cases per year by the year 2050. The overuse and misuse of antibiotics is the primary driver of this resistance, with up to 50% of antibiotics prescribed in the hospital setting being either unnecessary or inappropriate. K.pneumoniae is a Gram-negative, non-motile, encapsulated, lactose- fermenter, facultative anaerobic, rod-shaped in the family *Enterobacteriaceae*. *Klebsiella* organisms are often resistant to multiple antibiotics. Plasmids are implicated as the primary source of the resistance genes. Klebsiella species which producing extendedspectrum beta-lactamases are resistant to virtually all beta-lactam antibiotics, Tetracycline, Aminoglycosides, Fluoroquinolones, except carbapenems. Chloramphenicol, and Trimethoprim/Sulfamethoxazole represent other frequent resistance targets. The Carbapenems resistant K. pneumoniae is emerging as an important challenge in health-care settings.

This is a cross sectional study conducted for the period from October 2019 to April 2020. The study included 293 human and animal samples. Human samples were obtained from patients suffering from different infections; 112 urine, 22 sputum, 8 burns, 11 wounds 22 stool and 7 blood samples. The age range of patients was 1-65 years; 77 were males and 105 were females. Human specimens were collected from Baquba Teaching Hospital, Al-Batool Teaching Hospital for Maternity and Children and from other health care centers. Human privacy was respected as verbal consents of patients were obtained. Whereas, animal samples were; 55 stool, 23 milk and 33 urine samples from different animal species (cow, sheep, goat and chicken).

Animal specimens were collected from several fields of animal husbandry poultry farms in the cities of Bani Saad, Baquba and from Veterinary clinic in Buhriz district. These samples were submitted for standard bacteriological culture using ordinary and selective media. Plates were incubated at 37^oC for overnight. Morphological inspection, microscopically examination, biochemical tests, and VITEK2 system were used to confirm bacterial identification. Statistical analysis was done on data accumulated throughout the study using SPSS, T-test & Chi square. P values less than 0.05 were considered significant.

A total of 41 confirmed isolates of *K.pneumoniae* were identified, 37 from human samples and 4 from animal samples. The antibiotic susceptibility test for *K. pneumoniae* isolates was performed against 14 antibiotics using disk diffusion method. All of the 37 human isolates (100%) were resistant to Rifampicin, Ampiclox and Methicillin. 16 (43.2%), were resistant to Ceftriaxone, 29 (78.4%) were resistant to Carbenicillin, 23 (62.2%) were resistant to Piperacillin, 15(40.5%), resistance to streptomycin, and 16 (43.2%) were resistance to Trimethoprim-Sulfamethozal. The rates of sensitivity to Imipenem Ciprofloxacin, Azithromycin, Levofloxacin, Nalidixic acid and Polymyxin B were (100%), 33 (89.2%), 31 (83.8%), 30 (81.1%), 21 (56.8%) and 25 (67.6%) respectively.

On the other hand, antibiotic susceptibility test for the 4 isolates of *K*. *pneumoniae* from animal were all(100%) resistant to Rifampicin, Ampiclox and Methicillin. Whereas, all isolates (100%) were sensitive to Ciprofloxacin, Imipenem, Azithromycin, levofloxacin and Polymyxin B. 3(75%) of the isolates were resistant to Carbenicillin and 2 (50%) were resistant to Trimethoprim-Sulfamethozal. Additionally, 1 (25%) of the isolates were resistant to Streptomycin, Nalidixi acid, Ceftriaxone and Piperacillin. The rate of multi-drug

resistance phenotypes in *K. pneumoniae* human isolates was (70.2%), while it was (75%) for animal isolates.

Polymerase chain reaction (PCR) technique was used in the detection of resistance genes in 30 isolates of *K. pneumoniae* (26 of human and 4 of animal) by using primers for three resistance genes (*bla-CTX-M*, *bla –OXA*, *and StrA*). The findings showed that 15 human isolates had the *bla-CTX-M* genes, 2 isolates had *bla –OXA* genes, and 18 isolates had *StrA* gene. Whereas, only one isolate (25%) from animal samples had both *bla-CTX-M* and *StrA* genes, and all the isolates were devoid of the *bla-OXA* genes.

Automated DNA sequencer, for the resistance genes (*StrA*, *bla-OXA*, *bla-CTX-M*) of two isolates (one from human and the another from animal) were sequenced and compared with reference gene in Genbank. The DNA sequence of all the five resistance genes were 95-100% identical to DNA sequences of resistance gene from different species of *Enterobacteriaceae* bacteria and other bacterial species that were documented in the Genbank. Those five resistant genes diagnosed in the current study were recorded in the Genbank data bases.

The study concluded that multiple drug resistant(MDR) *K. pneumoniae* are prevalent among human population in Diyala community particularly in children and elderly hospitalized patients. Domesticated animals may play a role as an additional source of the MDR bacterium in the community.

No.	Items	Page	
1	Title		
2	Quran verse		
3	Supervisor Certification		
4	Examination Committee Certification		
5	Dedication		
6	Acknowledgements		
7	Summary	I	
8	List of Contents	IV	
9	List of Tables	XIV	
10	List of Figures	XVII	
11	List of Abbreviations	IV	
	Chapter One		
1.1	Introduction	1	
1.2	Aims of Study	6	
	Chapter Two		
2	Literature Review	7	
2.1	Background	7	
2.2	Classification of K. Pneumoniae	8	
2.3	History	9	
2.4	Virulence factors of <i>Klebsiella pneumoniae</i>	9	

List of contents

2.4.1	The polysaccharide capsule	10
2.4.2.	Lipopolysaccharides	11
2.4.3	Fimbriae (pili)	12
2.4.4	Siderophores	13
2.4.5	Biofilm formation	14
2.4.6	Urease enzyme	16
2.5	Infection	17
2.5.1	Infection in human	17
2.5.1.1	Risk factors	18
2.5.1.1.1	Hospitalization	18
2.5.1.1.2	Impaired in immunity	19
2.5.2	Infection in animals	20
2.6	Isolation and identification of <i>K. pneumoniae</i>	20
2.7	Identification of <i>K. pneumoniae</i> by Vitek 2 compact system	21
2.8.	Antibiotics therapy	22
2.8.1	History	22
2.8.2	Antibiotic resistance in <i>K. pneumoniae</i>	23
2.8.3	Antimicrobial resistance and biofilm formation	25
2.8.4	Origin of drug resistance	26
2.8.4.1	Genetic basis of antimicrobial resistance	26
2.8.4.2	Non genetic basis of resistance	26

2.8.5.	Multidrug Resistant organism (MDR)	27
2.8.6	The most common type of resistance in <i>K. pneumoniae</i>	28
2.8.6.1	Resistance to β-lactamases	29
2.8.6.1.1	Classification schemes for β -lactamases	31
2.8.6.1.1. 1-1	Group 1 Cephalosporinases	31
2.8.6.1.1. 1.2	Group 2 Serine β-lactamases	32
2.8.6.1.1. 1.2.1	Subgroup 2a	32
2.8.6.1.1.1.2.2.	Subgroup 2b b-lactamases	32
2.8.6.1.1.1.2.3.	Subgroup 2c Penicillinases	33
2.8.6.1.1. 1.4	Subgroup 2d	33
2.8.6.1.1. 1.3	Group 3 Metallo-β-lactamases	34
2.8.6.2	Resistance to Carbapenems (<i>K. pneumoniae</i> carbapenemase	36
2.8.6.3	Resistance to polymyxins	37
2.8.6.4	Resistance to quinolones	38
2.8.6.5	Resistance to Streptomycin (aminoglycoside)	38
	Chapter Three	
3	Materials and Methods	40
3.1	Materials	40
3.1.1	Equipment	40
3.1.2.	The appliances	41
3.1.3	Solutions	41
3.1.4	Culture media	42
3.1.5	Antimicrobial discs	42

3.1.6	The Kits	43
3.1.7.	Site of the study	43
3.2	Methods	44
3.2.1	Preparation of culture media	44
3.2.1.1	Nutrient broth	44
3.2.1.2	Muller Hinton agar	44
3.2.1.3	MacConkey agar	44
3.2.1.4	Urease agar	44
3.2.1.5	Eosin Methylene Blue agar(EMB)	45
3.2.1.6	Blood agar	45
3.2.1.7	Nutrient agar	45
3.2.1.8.	Brain heart infusion broth	45
3.2.2	Samples collection and processing	46
3.2.2.1	Human samples	46
3.2.2.2	Animal samples	46
3.2.3	Samples culturing	47
3.2.3.1	Isolation and Identification of bacteria	47
3.2.3.2	Identification of Isolates	48
3.2.3.2.1	Macroscopic and colonial identification	48
3.2.3.2.2	Gram's Stain	48
3.2.3.2.3	Identification of bacteria using Vitek System (Confirmation Test) (Confirmation Test)	48
3.2.4	Preservation of Isolate	49
3.2.4.1	Short term preservation	49
3.2.4.2	Long term preservation	49

3.2.5	Antimicrobial activity	49
3.2.6	Molecular identification Using PCR Technique:	51
3.2.6.1	DNA extraction	51
3.2.6.2	Quantitation of DNA	52
3.2.6.3	Primers	53
3.2.6.4	Reaction Setup and Thermal Cycling Protocol	54
3.2.6.5	Agarose Gel Electrophoresis	55
3.2.6.6	Casting of the horizontal agarose gel	55
3.2.6.7	DNA loading	56
3.2.6.8	Standard Sequencing	56
3.2.6.9	Statistical analysis	56
	Chapter Four	
4	Results	58
4.1	Human specimens	58
4.1.1	Types of specimens	58
4.1.2	Gender	58
4.1.3.	Age	59
4.1.4	Site of specimens collection	59
4.1.5	Characteristics of K. pneumoniae:	60
4.1.6.	Confirmatory diagnosis	61
4.1.7.	Cultivation and isolation of K. pneumoniae from human	61
4.1.7. 1.	Results of cultivation	61
4.1.7. 2	Results of Gram's stain	62
4.1.7.3	Bacterial isolates	62
4.1.7.4	Culture positivity according to collection site	63

4.1.7.5	Bacteria species according to collection site	63
4.1.7.6	Specimen type according to age	64
4.1.7.7	Culture yields according to age	64
4.1.7.8	Bacterial species according to age	65
4.1.7. 9.	Culture yields according to gender	65
4.1.7.10	Bacterial species according to gender	66
4.1.7.11.	Culture yields according to specimen	66
4.1.7.12	Bacterial species according to specimen	67
4.1.8	Antimicrobial susceptibility for K. pneumoniae isolate of human specimens	67
4.1.8.1	Multidrug resistance of K. pneumoniae isolates from human specimens	69
4.1.9.	Molecular detection of human resistance genes	70
4.1.9.1.	Gene detection according to age groups	71
4.1.9.2.	Gene detection according to collection site	72
4.1.9.3.	Gene detection according to gender	73
4.1.9.4	Gene detection according to specimen type	73
4.1.9.5	Genes detection according to antibiotic susceptibility	75
4.1.9.5.1	The <i>bla-OXA</i> gene	75
4.1.9. 5.2	The <i>bla-CTX-M</i> gene	77
4.1.9. 5.3	The StrA gene	79
4.2.	Animal specimens	81
4.2.1	Type of Animal	81
4.2.2	Type of specimens	82

4.2.3	Animal gender	82
4.2.4	Cultivation and isolation of <i>K. pneumoniae</i>	82
4.2.4.1	Results of cultivation	82
4.2.4.2	Results of Gram's stain	83
4.2.4.3	Bacteria species isolates	83
4.2.4.4	Culture positivity according to animal types	84
4.2.4.5	Bacterial species according to animal species	84
4.2.4.6	Culture positivity according to specimen types	85
4.2.4.7	Bacterial species according to specimen types	85
4.2.5.	Antimicrobial susceptibility for <i>K. pneumonia</i> e isolate of animal specimens	86
4.2.5.1	Multidrug resistance of <i>K. pneumoniae</i> isolates from animal specimens	87
4.2.6	Genes resistance in isolates of animals	88
4.2.6.1	Gene detection rate	88
4.2.6.2.	Gene detection according to animal types	88
4.2.6.3	Gene detection according to specimen types	89
4.3	Automated DNA Sequencer	93

Chapter Five		
5	Discussion	95
5.1	Growth characteristics of <i>K. pneumoniae</i>	95
5.2	K. pneumonia isolation rates	96
5.2.1	Human specimens	98
5.2.1.1	The isolation rate of <i>K. pneumoniae</i> according to source of specimens	101
5.2.1.1.1	Stool specimens	101

5.2.1.1.2	Urine specimens	103
5.2.1.1.3	Blood specimens	104
5.2.1.1.4	Wound swab specimens	105
5.2.1.1.5	Burn swab specimens	105
5.2.1.1.6	Sputum specimens	106
5.2.2	Animal specimens	107
5.3	Antimicrobial sensitivity test of <i>K. pneumoniae</i> isolates of human and animal specimens	109
5.4	Multidrug-resistant (MDR) phenotype for human and animal specimens	112
5.5	Molecular detection of <i>K.pnemoniae</i> resistance genes	113
5.5.1	Molecular detection of human resistance genes	113
5.5.1.1	The CTX-M (cefotaxime hydrolyzing β-lactamase) gene	113
5.5.1.2	bla-OXA gene	115
5.5.1.3	StrA gene	116
5.5.2	Molecular detection of animals resistance genes	118
5.6	Sequencing of human and animal genes	119

	Chapter Six	
6	Conclusions and Recommendations	122
6.1	Conclusions	122
6.2	Recommendations	124
	References	126

Appendixes		
Appendix 1	Biochemical tests of the VITEk2 System for the diagnosis of <i>K</i> . <i>Pneumoniae</i>	
Appendix 2	DNA Sequencer for resistance genes isolated from human and animal	
2.1	DNA sequencer for forward OXA gene of K. pneumoniae isolate from human sample	
2.2	DNA sequencer for reverse OXA gene of <i>K. pneumoniae</i> isolate from human sample	
2.3	DNA sequencer for forward StrA gene of K. pneumoniae isolate from human sample	
2.4	DNA sequencer for reverse StrA gene of K. pneumoniae isolate from human sample.	
2.5	DNA sequencer for forward <i>bla- CTX-M</i> gene of <i>K</i> . <i>pneumoniae</i> isolate from human sample	
2.6	DNA sequencer for reverse <i>bla-CTX-M</i> gene of <i>K</i> . <i>pneumoniae</i> isolate from human sample.	
2.7	DNA sequencer for forward StrA gene of K. pneumoniae isolate from animal sample.	
2.8	DNA sequencer for reverse StrA gene of K. pneumoniae isolate from animal sample.	
2.9	DNA sequencer for forwardbla-CTX-Mgene of K.pneumoniaeisolatefrom animal sample	
2.10	DNA sequencer for reverse bla-CTX-M gene of K.pneumoniae isolate from animal sample.	

Appendix(3)		
3.1.	FASTA sequence of the resistance genesofK.pneumoniae isolates from human	
3.1.1	OXA-F	
3.1.2	OXA-R	
3.1.3	CTX-F	

3.1.4	CTX-R	
3.1.5	STRA-F	
3.1.6	STRA-R	
3.2	FASTA sequence of the resistance genes of K. pneumoniae Isolate from animal:	
3.2.1	CTX-F	
3.2.2	CTX-R	
3.2.3	STRA-F	
3.2.4	STRA-R	

Appendix 4	
Appendix 4	Recording the resistance genes of <i>K. pneumoniae</i> isolated from human and animal within Genbank data bases
4.1	Recording the resistance gene type <i>bla-CTX-M</i> gene of CTX-M family class A extended spectrum beta lactamase of <i>Klebsiella pneumoniae</i> isolated from sputum sample of human on GenBank of NCBI.
4.2	Recording of resistance gene type <i>StrA</i> of aminoglycoside –o- phosphotransferase APH(3'') –Ib of <i>Klebsiella pneumoniae</i> isolated from sputum sample of human on GenBank of NCBI.
4.3	Recording of resistance gene type <i>StrA</i> of aminoglycoside –o- phosphotransferase APH(3'') –Ib of <i>Klebsiella pneumoniae</i> isolated from stool of chicken sample on GenBank of NCBI
4.4	Recording resistance genes type <i>bla-CTX-M</i> gene of <i>CTX-M</i> family class A extended spectrum beta lactamase of <i>Klebsiella pneumoniae</i> isolated from stool of chicken sample on GenBank of NCBI.
4.5	Recording resistance genes type bla-OXA of Klebsiella pneumoniae isolated from sputum sample of human on GenBank of NCBI

Appendix 5		
Appendix 5	Phyloenetic tree for resistance gene of <i>K. pneumoniae</i> isolated of human and animal	
5.1	Phyloenetic tree shows genetic convergence between bla-CTX-M gene of K.pneumoniae isolated from human(Hm-1 bla-CTX-M gene) with bla-CTX-M gene of K.pneumoniae (HMO-2 bla-3gene for beta lactmase) isolated from animal and other K.pneumoniae isolated globally	
5.2	Phyloenetic tree shows genetic convergence between bla -OXA gene(Hm-1bla-2)gene for betalactmase of <i>K.pneumoniae</i> isolated from human with other <i>K.pneumoniae</i> isolated globally	
5.3	Phyloenetic tree show genetic convergence between StrA gene of k.pneumoniae isolated from human(Hm-1 aph(3")Ib with StrA gene of K.pneumoniae (HMO-2 aph(3")Ib for aminoglycoside o-phosphotransferase isolated from animal and with other Kpneumoniae isolated globally	
	Abstract in Arabic Title in Arabic	

List of Tables

Series	Subject	Page
Table 2.1	Major families of β- lactamases of clinical importance	35
Table.3.1	laboratory equipment and apparatuses utilized in the study	40
Table.3.2	laboratory Equipment: appliances	41
Table.3.3	Solutions and Chemicals	41
Table.3.4	Culture Media Utilized for Isolation and Identification	42
Table.3.5	Antimicrobial Discs Used in study	42

Table.3.6	Kits used in the study	43
Table.3.7	Type and number of human sample	46
Table.3.8	Total number and type of animal and type of Sample	46
Table.3.9	The Diameter of Inhibitory Zone Inhibition Zone	50
Table.3.10	DNA Concentration	52
Table.3.11.	The Primers and Their Sequences Used in Conventional PCR Technique	53
Table3.12.	Reaction Volume and Components of PCR	54
Table3.13.	Thermal Cycle Programming	55
Table4.1	Types of human specimens included in the study	58
Table.4.2	Human specimens according to gender	58
Table.4.3	Distribution of human age groups	59
Table.4.4	Human specimens according to site of collection.	59
Table .4.5	Results of cultivation of human specimens on blood agar and mac agar	62
Table .4.6	Results of Gram's staining of human bacterial growth	62
Table .4.7	Isolated bacterial species from human specimens	62
Table .4.8	Culture positivity rate according to specimen collection site.	63
Table .4.9	Bacterial species rate according to specimen collection site	63
Table .4.10	Specimen types according to age groups.	64
Table .4.11	Culture yields according to age groups	65
Table .4.12	Bacteria species according to age groups	65
Table .4.13	Culture yields according to gender	66
Table .4.14	Bacterial species according to gender	66
Table.4.15	Culture positivity according to type of specimen	67

Table .4.16	Bacterial species according to type of specimen	67
Table .4.17	Antimicrobial susceptibility testing of human K. pneumoniae isolates	68
Table .4.18	Multidrug resist (MDR) of <i>K. pneumoniae</i> isolates of human specimens.	70
Table.4.19	Resistant genes detection among K. pneumonia human isolates	70
Table.4.20	Resistance gene detection rate according to age groups	71
Table.4.21	Resistance gene detection rate according to sites of specimen collection	72
Table.4.22	Resistance gene detection rate according to gender of human isolates	73
Table .4.23	Resistance gene detection rate according specimen type	74
Table .4.24	Association of <i>bla-OXA</i> gene and antimicrobial susceptibility of isolates	75
Table .4.25	Association of <i>bla-CTX-M</i> gene and antimicrobial susceptibility of isolates	78
Table .4.26	Association of <i>StrA</i> gene and antimicrobial susceptibility of isolates	80
Table .4.27	Type of animals included in the study	81
Table .4.28	Animal specimens included in the study	82
Table .4.29	Animal gender included in the study.	82
Table .4.30	Results of cultivation of domesticated animal specimens	82
Table.4.31	Results of Gram's staining of animal bacterial growth.	83
Table .4.32	Isolated bacterial species from animal specimens	83
Table .4.33	Culture results according to animal types	84
Table.4.34	Bacterial species according to animal types	84

Table.4.35	Culture results according to specimen types	85
Table.4.36	Bacterial species according to specimen types	85
Table .4.37	Antimicrobial susceptibility testing of animal <i>K. pneumoniae</i> isolates	86
Table .4.38	Multidrug resist (MDR) of <i>K. pneumoniae</i> isolates of animal specimens	87
Table .4.39	Gene detection rate among animal <i>K. pneumonia</i> isolates	88
Table.4.40	Resistant gene detection according to animal types	88
Table.4.41	Resistant gene detection according to specimen types	89
Table 4.42	Accessions numbers of resistance gene of local isolates in Genbank	93

List of Figures

NO.	Subject	Page
Figure4.1.	Klebsiella pneumoneia on MacConkey's agar	60
Figure4-2.	Klebsiella pneumoniae on EMB agar	61
Figure4-3.	Urease test for K. Pneumoniae isolates	61
Figure4-4	Bar diagram of antimicrobial susceptibility of 37 <i>K. pneumonia</i> isolates from human specimens	69
Figure4-5	Disc diffusion of antimicrobial susceptibility test on Muller Hinton agar .	69
Figure4-6	Bar diagram antimicrobial susceptibility testing of animal <i>K. pneumonia</i> isolates.	87
Figuer 4.7	Amplification of the <i>StrA</i> gene of <i>K. pneumoniae</i> were fractionated on 1% agarose gel electrophoresis and stained with Eth.Br. First Lane:100bp DNA marker (Ladder), lanes from 1-8,11,13-15 for human isolates while, 9, 10,12, for animal isolates, size of amplfied gene is 299bp.	90
Figuer 4.8	Amplification of <i>Str A</i> gene of <i>K. pneumoniae</i> were fractionated on 1% agarose gel electrophoresis and stained with Eth.Br. First Lane:100bp DNA marker	90

	(Lader), lanes from 16-18 and 20-30 for human isolates while, 19 for animal isolate ,size ofmplified gene is 299pb.	
Figuer 4.9	Amplification of bla- CTX gene of K. Pneumoniae were fractionated on 1% agarose gel electrophoresis and stained with Eth.Br. First Lane:100bp DNA marker(Lader), lanes from 1-8, 11 and 13-15 for human isolates while, 9, 10 and 12 for animal isolates ,size of amplified gene is 593pb.	91
Figuer 4.10	Amplification of bla- CTX gene of K. Pneumoniae were fractionated on 1% agarose gel electrophoresis and stained with Eth.Br. First Lane:100bp DNA marker(Lader), lanes from 16-18 and 20-30 for human isolates while 19 for animal isolate, size of amplified gene is 593pb.	91
Figuer 4.11	Amplification of <i>bla -OXA</i> gene of <i>K. Pneumoniae</i> were fractionated on 1% agarose gel electrophoresis and stained with Eth.Br first Lane:100bp DNA marker(Lader), lanes from 1-8, 11 and 13-15 for human isolates while 9, 10and 12 for animal isolates , size of amplified gene is 564 bp ,no gene detected.	92
Figuer 4.12	Amplification of <i>bla -OXA</i> gene of <i>K. Pneumoniae</i> were fractionated on 1% agarose gel electrophoresis and stained with Eth.Br first Lane:100bp DNA marker(Ladder), lanes from 16-18 and 20-3 for human isolates while, 19 for animal isolate .size of amplified gene is 564bp.	92

List of Abbreviations

BP	Base pair
Bla- gene	β-Lactamase gene

CDC	Centers for Disease Control
CFU	Colony forming unit
CL	Cell lysis
CLSI	Clinical and Laboratory Standard Institute
CPS	Capsular Polysaccharide
CTX -M	Cefotaximase, B-lactamase active on cefotaxime
DNA	Deoxyribose Nucleic Acid
dNTP	Deoxy nucleoside tri-phosphate
EDTA	Ethylene Diamine Tetraacetic Acid
ESBL	Extended spectrum beta lactamase
КРС	Klebsiella pneumoniae Carbapenemase
LPS	Lipopolysaccharide
MBL	Metallo Beta-lactamase
MDR	Multi drug resistance
MIC	Minimum inhibitory concentrations
MR/K-HA	Mannose-resistant, <i>Klebsiella</i> -like hemagglutination
OMPs	Outer-membrane proteins
OXA	Oxacillinase b-lactamase active on oxacillin
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
PCV	Packed Cell Volume

SHV	β-Lactamase (Sulfhydryl Reagent Variable)
TDR	totally drug-resistant
TEM	β-lactamase named after the patient (Temoneira)
UK	United Kingdom
UTI	Urinary Tract Infection
UV	Ultra Violet
WHO	World health organization
XDR	extensively drug resistant

Chapter One Introduction

**

Chapter One Introduction

1.1. Preface:

Two main ways through which modern medicine saves lives are antibiotic treatment of serious infections and the success of surgical and medical procedures under the control of antibiotics (Nathan and Cars 2014). Antibiotics are the most important type of antimicrobial substances that either inhibit or kill the growth of bacteria. Antibiotics (e.g. penicillin) are those formed naturally by certain microorganisms battling others, whereas non-antibiotic antibacterials (e.g. sulfonamides and antiseptics) are fully synthetic, both are included in antimicrobial chemotherapy and both have the ability of killing or preventing the growth of bacteria (Leekha *et al.*, 2011; Gould, 2016). However, ability of several bacterial pathogens to create resistance to antibiotics is the legacy of the golden era of antibiotic discovery, the 1930s -1960s (Nathan and Cars, 2014).

Antimicrobial resistance (AMR) is the capability of a microbe to resist the effects of antimicrobials which previously could successfully treat the microbe. The statement antibiotic resistance (AR) is a subset of AMR as it refers just to those bacteria that become antibiotic resistant. Resistant bacteria are harder to treat; requiring various or large doses of antibiotics. These Strategies may be toxic , expensive, or both. Bacteria resistant to multiple antimicrobials are called(MDR). Those considered extensively drug resistant (XDR) or totally drug-resistant (TDR) are sometimes called "superbugs" (WHO, 2015; CDC, 2017).

Antimicrobial resistance is global widespread problem, with AMRrelated deaths expected to reach 10 million annually by the year 2050. The overuse and misuse of antimicrobials is the primary cause of this phenomenon, with up to 50 per cent of antibiotic drugs prescribed in the hospitals settings being either unnecessary or inappropriate (de Kraker *et al.*, 2016 ;Tagliabue and Rappuoli, 2018). Worldwide disaster of antimicrobial resistance, potentially, has a devastating effect on global economy, human beings and the livestock. It has been predicted that over the next years ,300 million people will die from drug resistance (Editorial, 2014). This will knock catastrophically on the economy, reducing global gross domestic product (GDP) by 2 to 3.5% more than it should otherwise has been in 2050 (CDC, 2019).

At least some clinical isolates of many pathogenic bacterial species; *Mycobacterium tuberculosis, Neisseria gonorrhoeae, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,* and species of *Enterobacter, Salmonella,* and *Shigella* are resistant to most antibiotics. The problem seems out of control (Nathan and Cars, 2014).

The *K. pneumoniae* is a Gram negative, non-motile, with large capsule, fermenting to lactose, rod shaped, also the bacterium is facultative anaerobic of the *Enterobacteriaceae* family. On MacConkey agar it appears as a mucoid fermenting lactose colony. Although is present as part of the normal residential flora of the intestines, skin and mouth, it can cause harmful changes to human and animal lungs if inspired, specifically to the air vesicles resulting in bloody jelly like sputum. *Klebsiella species*; in recent years, have become prominent pathogens in nosocomial infections (Li *et al.*, 2014; Bing *et al.*, 2019). In addition to community acquired or nosocomial pneumonia which are typically in the form of bronchopneumonia, *K. pneumoniae* can also cause urinary tract infections, lower ducts of bile infections, and surgical wound infections. Many clinical diseases, including upper respiratory tract;

infection of urinary tract (UTI), cholecystitis, pneumonia, thrombophlebitis; diarrhea, wound infection; meningitis, osteomyelitis can lead to (bacteremia; sepsis and septic shock) that may result from bacteria entering the blood stream (Jung *et al.*, 2012). Also *Klebsiella pneumoniae* can cause diarrhea especially in children (Siham *et al.*, 2016).

The *Klebsiella* organisms are frequently resistant to several antibiotics. Evidence suggests plasmid as the central source of resistance genes. *Klebsiella* species that have the capability to producing extended-spectrum beta-lactamases (ESBL) were resistant to almost total beta-lactam antibiotics, resistance except carbapenems. Other common targets include, fluoroquinolones, Aminoglycoside, Tetracycline, Trimethoprim-Sulfamethoxazole and Chloramphenicol(Nathisuwan et al., 2001; Hudson et al., 2014). Carbapenems-resistant Klebsiella pneumoniae (CRKP) is one of carbapenems-resistant Enterobacteriaceae (CREs), which are emerging as an important oppose in healthcare settings. A progressive rise in CRKP has been observed globally over the last 10 years and is possibly best known for an outbreak within the healthcare system; In the United States, the most popular carbapenems resistant is Enterobacteriaceae (Schwaber et al 2008; Limbago et al., 2011). Carbapenems-resistant K.pneumoniae is resistant to about all available antimicrobials, it's infections are responsible for high morbidity especially in risky people and may need synergistic and mortality, combination of antibiotics (Azza et al., 2010; Yu et al., 2019).

Mechanisms which cause carbapenems resistance include hyperproduction of (*AmpC*beta-lactamase) with mutation in external porin membrane, *CTX-M* extended spectrum beta-lactamase (ESBL) in drug efflux or a mutation in porin, and the most important mechanism is carbapenemase production(bla - KPC). The gene encoding to the enzyme *bla-kpc* is carried on a mobile piece of genetic material. Anastasia *et al.* (2018), showed that antimicrobial resistance and virulence genotypes & phenotypes of *K. pneumoniae* isolated from the urine (30%); respiratory system (57%); wounds (5%); blood (3%); cerebrospinal fluid (4%) and rectal swab (1%) revealed that the majority (98%) were (MDR) strains carrying *bla-SHV* (91%); *bla-CTX-M* (74%); *bla-TEM* (51%); *bla-OXA* (38%) and *bla-NDM* (1%) beta-lactamase genes; class 1 integrons (38%); and the porin protein gene (*ompK36*) were (96%). Genomic analysis to identify the sequencing of *K. pneumoniae* Producing (ESBL) were detected between swine and human source in and across abattoirs (Founou *et al.*, 2018).

The hyper-virulent Klebsiella pneumoniae (hvKp) has raised as a more virulent worldwide pathogen as compared to classical *K. pneumoniae* that is capable to induce community-acquired(CA) infections in normal healthy persons. HvKp is carried in the gastrointestinal tract(GIT); which participates in its spread in the healthcare settings and society. The hvKp has spread around the world and caused variable infections, beside pyogenic liver suppuration; it has the potential to extend to distant sites, most frequently lung, eyes, central nervous system, illnesses of soft tissue and bacteremia. The hyper virulence genetic determinants are usually located on chromosomal mobile genetic elements and also in large virulence plasmids. These different virulence determinants contain up to four siderophore systems for iron acquisition; K1 and K2 capsule types; Increased liberation of capsules; the coli-bactin toxin; biofilm formation plus the hyper-mucoviscosity a descriptive phenotypic of hvKp. Worrying that these (MDR)hypervirulent strains have appeared as additional struggle in the fight against these dangerous pathogens (Choby et al., 2020).

Even an outbreak of these Carbapenems-Resistant and hyper-virulent *K. pneumoniae* was recorded (Zhao *et al.*, 2019).The wide variety of the gene for antimicrobial resistance and the higher rates of resistance to

antibiotics of *K. pneumoniae* e.g. carbapenems and colistin is indicative of an extremely mutable strain and highlights the urgency of infection control steps, continuous monitoring of antimicrobial resistance and the prudent use of antibiotics to avoid further selection of resistant isolates and the emergence of pan-resistant clones (Berglund *et al.*, 2019).

1.2. Aims of the study:

This study was designed and conducted in Diyala province, for Isolation, characterization and purification of *K. pneumoniae* isolates from different types of clinical specimens of human and domesticated animals to achieve the following goals:-

- 1. Exploration of the antibiotic susceptibility of *K. pneumoniae* isolates to different antibiotic or antibacterial types agents.
- 2. Detection of certain genes associated with antimicrobial resistance of *K. pneumonia* via polymerase chain reaction technique.