

Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Veterinary Medicine Department of Microbiology

Seroprevalence and Molecular Detection of Infectious Laryngotracheitis in Layers of Diyala Province

A thesis

Submitted to the Council of the College of Veterinary Medicine/University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master of Science in Veterinary Medicin/Veterinary Microbiology

> By Anmar Ayoub Kadhim B.V.M.S(2014)

Supervisedby Prof.Dr.Karim Sadun Ali (Ph.D.)

2022 A.D. 1444 A.H

سِيمِ اللهِ الرَّحْمَرِ الرَّحِيمِ

﴿ يَرْفَعِ اللهُ الَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا مِنْكُمْ وَالَّذِينَ أُوتُوا اللهُ بِمَا تَعْمَلُونَ أُوتُوا الْعِلْمَ دَرَجَاتٍ وَاللهُ بِمَا تَعْمَلُونَ خَرِيرٌ ﴾ خَبِيرٌ ﴾

صدَق الله العظيم

سورة المجادلة:الآية (١١)

Supervisor Certification

I certify that this thesis entitled (Seroprevalence and Molecular Detection of Infectious Laryngotracheitis in Layers of Diyala Province) was prepared by (Anmar Ayoub Kadhim) under our supervision at the Department of Microbiology, College of Veterinary Medicine, University of Diyala, as partial fulfillment of the requirements for the Master Degree of Science in Veterinary Medicine/ Veterinary Microbiology.

Supervisor Prof.Dr.Karim Sadun Ali

College of Veterinary Medicine
University of Diyala
/ 2022

In view of the available recommendation, I forward this thesis for debate by the examining committee

Assist. Prof.Dr. Khalid Ibrahim Abd Alkhazraji

Vice Dean of Postgraduate Studies and Science Affairs

College of Veterinary Medicine

University of Diyala

/ /2022

Examination committee certification

We,the examination committee, certify that the entitled thesis "Seroprevalence and Molecular Detection of Infectious Laryngotracheitis in Layers of Diyala Province" by (Anmar Ayoub Kadhim) has been examined and read through all of its contents and related topics. The committee recommends that the student passed and awarded the degree of Master of Science in Veterinary Medicine (Veterinary Microbiology).

Prof.Dr. Aida Bara Allawe (Chairman)

/ / 2022

Assist.Pro.Dr. Nawal Salih Jaafer (Member)

/ / 2022

Assist.Pro.Dr. Walaa Najm Abood (Member)

/ / 2022

Prof.Dr. Karim Sadun Ali (Member and Supervisor)

/ / 2022

Pro.Dr.
Amer Khazaal Salih Al-Azzawi
Head of department of Microbiology

Asst.Prof.Dr.
Khalid Ibrahim Abd AL-Khazraji
Dean of College of Veterinary Medicin

/ / 2022 / / 2022

Dedication

To my father..... The most precious person in my life, to the source of my strength and success, to the warm embrace, to which by their silent prayers brouth me to success. My Allah protect you for me all the life.

To my mother..... The source of light in my life who surrounds me with her love and kindness and never forgets me in her sincere prayer. My Allah protect you for me all the life.

To my brothers and my sisters..... The most wonderful persons in the world, with my respect and love.

To my husband..... The warm heart which is the my second half, which helps me and shares me every step to glory.

To my children.....(Abdulla, Tuqa) symbol of love and pride.

I dedicate this humble work

Heknowledgments

First and always, I bow my head in gratitude to **Allah**, the Most merciful and the More Compassionate.

I would like to express my appreciation to Deanery of the College of Veterinary Medicine University of Diyala for offering me the opportunity to complete my study.

I would like to express my deep gratitude and sincere appreciation to my supervisors **Prof. Dr. Karim Sadun Ali** (**Ph.D**) for his sponsor, deep concern, moral support valuable unfailing help and continuous advice throughout the course of my research work.

I would like to express my deepest thanks to **Prof. Dr. Amer Khazaal Saleh** (**Ph.D**)who assisted in the supervision of this work and provided continuous advice, as well as co-operation in proposing the subjects to this work.

I would like to express my special thanks to my friend **Dr.Zainab Abd Awan ,Dr.Noor Hussein Abdul-rahman** and **Dr.Mohammed Abd Al-Hamed** for their support and help me during the period of study.

I wish to express my sincere thanks to **Dr.Ramzi** Abdulghafoor Al-Agele, Asst, Pro.Dr. Zahid Ismail, Dr. Amer Al-Baldawi and Dr. Melad Ibrahim Alqaisi, , for their support and help during this study.

Finally, I would like to express my great thanks to every person who supported me a lot during the preparation of this work.

Declaration from

I here by declare that this thesis entitled (Seroprevalence and Molecular Detection of Infectious Laryngotracheitis in Layers of Diyala Province) presented at the College of Veterinary Medicine-University of Diyala in 2022, is my original work, except for quotations and citations which have been duly acknowledged. I also declare that it has not been submitted previously or concurrently, for any other degree at the University of Diyala or other Universities.

Anmar Ayoub Kadhim

Date: / / 2020

SUMMARY

Avian infectious laryngotracheitis (ILT) is a viral respiratory disease which is included within List B of the Office International des Epizooties (OIE). Avian infectious laryngotracheitis caused by: Gallid Herpesvirus I. Infectious laryngotracheitis virus is a member of the family Herpesviridae, subfamily Alphaherpesvirinae, genus Iltovirus. The species is named Gallid Herpesvirus-1(GHV-1) double stranded linear DNA virus . Gallid Herpes virus causes respiratory disease in chickens and pheasants. Many Iraqi workers studied the widespread disease such as Alaraji and Al-Saadi. In Diyala Province, no research was done to identify the disease in chicken farms, especially the layer farms.

Five (5) tissue sample(tracheas and larynxes) and(270) serum samples were collected from chickens with respiratory tract infection after post mortem examination; these samples were collected from December 2021 to May 2022 from different areas in Diyala province include five region Baqubah, Khan Bani Saad, AL-ghalibia, Kanaan, and AL Khales. The flocks were 70 to 180 days old. Due to trachea occlusion by hemorrhage or exudate, mortality was 10-20% and morbidity was 50%. Not all layer farms received the ILTV vaccine, thus serum samples were ELISA-tested. RT-PCR assays were performed on collected samples using field and vaccine strain primers to rule out vaccine strain dissemination due to latent infection. Infectious laryngotracheitis (ILT) virus was isolated Chorioallantoic memberan of embryonated chicken egg. In this study's sequencing analysis, just one sample represented this location and also

SUMMARY

30 layers of 72-day-old were infected with ILTV from PCR positive homogenized infected CAM and 10 were controls.

Serological ELISA test that performed on collected serum samples from infected live birds showed positivity to ILTV IgG.Statistically the result were showed significant at (P<0.05) in Baqubah and Khan Bani Saad in comparison of Al-ghalibia ,Kanaan and AL-Khales according to region.According to age were showed significant at (P<0.05) at 120 and 180 days. All flock tissue samples tested positive for the ILTV field strain and negative for the viral vaccine strain using RT-PCR.On embryonated chickens' egg CAM, the virus generated pock sores. The 247 bp sample showed no nucleic acid variations, unlike most reference sequences (GenBank acc. no. ON572193).

In the current study, a phylogenetic tree was generated based on nucleic acid differences found in the amplification 247 bp of the UL22 genetic amplicon. Sample S1 was a type 1 (Gallid alphaherpesvirus 1) main clade virus The S1 sample under study did not differ from its Gallid alphaherpesvirus type 1 neighbors. This sample matched many Gallid alphaherpesvirus type 1 sequences, including the GenBank accession number (JX646899.1, MK895003.1, MN335811.1, MF405080.1, and MG775218.1). These Gallid alphaherpesvirus 1 strains are from Australia, Russia, and Peru.

In expremintal infection symptoms included despondency, rales, wet eyes (mild conjunctivitis), coughing, and minor gasping. These symptoms appeared 3 days after ILTV droppling in the eyes,inoculation intranasal and intraltracheal from a nearby field isolate. After 15 days of observation, no death was detected.

SUMMARY

Postmortem inspection of these layers indicated minimal mucus in the trachea after 24 hours and tracheitis 4-6 days after infection. The IgG antibody titer in experimentally infected chickens was determined by ELISA at 7, 14, and 21 days post-infection and show significant titer at 21 days P.I.

According to histological examinations of infected larynx and trachea after 24,48,72 hours, ILTV virus induced fusion of localized and/or multifocal mucosal epithelial cells. These caused intraepithelial syncytial (multinucleated) cells with cilia and intranuclear inclusion bodies. Basophilic and eosinophilic inclusion bodies might fill the nucleus or be surrounded by a halo.

Histological investigation of the chorioallantoic membrane infected with ILTV after (4-5) days post inoculation, showed pathological changes included congestion, hemorrhage and epithelial hyperplasia with appearance of basophilic/eosinophilic intranuclear inclusion bodies.

Conclusion in this study was the ILTV is field strain and not originated from vaccine strain, no variation in nucleic acid sequences of ILTV genom, the detected virus is mild strain and the severity of disease may be co-infection, crowding, poor ventilation.

Table of Contents

Serial No.	Titles	Page No.
	Summary	I
	Table of contents	IV
	List of tables	IX
	List of figures	X
	List of abbreviation	XV

CHAPTER ONE

Introduction

1.1	Introduction	1
1.2	Aims of the study	4

CHAPTER TWO

Review of Literatures

2	Review of Literatures	5
2.1	Preface	5
2.2	Background of infectious laryngotracheitis disease (ILTD)	6
2.3	The causative virus	7
2.3.1	Molecular analysis and DNA structure of the virus	7
2.3.2	Replication of the Virus	9
2.3.3	Propagation and growth of ILT	11
2.3.3.1	In embryo of hen's egg	11
2.3.3.2	In monolayers of cell	12
2.3.4	Physico-chemical characteristics	14
2.3.5	Viral antigens and their potency	14
2.3.6	Latency of the virus	15
2.3.7	Avian species susceptibility	15
2.3.8	Modes of viral spreading	16
2.4	Epidemiology of ILTV	17

2.5	Infectious laryngotracheitis (ILT) In Iraq	20
2.6	Pathogenesis of ILT virus	22
2.7	Natural Infections	24
2.7.1	Clinical signs	24
2.7.1.1	Peracute Infection	24
2.7.1.2	Acute infection	25
2.7.1.2	Chronic infection	25
2.7.2	Postmortem findings	25
2.7.3	Microscopic histopathological findings	26
2.8	Host body defense against the infection	27
2.9	Diagnosis	28
2.9.1	Clinical signs, postmortem and histopathology	28
2.9.2	Virus isolation	29
2.9.3	Immunohistochemistry and serological testing	30
2.9.4	Molecular biological testing	31
2.9.5	Differential diagnosis	32
2.9.6	Differentiation the ILTV from that of vaccine type	33
2.10	Vaccination	33
2.11	Control management and ILT eradication	36

CHAPTER THREE

Subjects, Materials and Methods

3.1	Design of study	38
3. 2	Materials	41
3. 2. 1	Laboratory apparatus	41
3. 2.2	Labratory and Diagnostic Kits	42
3.2.2.1	ELISA Kit	42

3.2.2.2	Real-Time qPCR kit	43
3.3	Methods	44
3.3.1	Preparing Chemical Solutions	44
3.3.1.1	Phosphate Buffered Saline	44
3.3.1.2	Antibiotic-antimycotic mixture preparation	45
3.3 .2	Sample collection	46
3.3.2.1	Sample of tissues	46
3.3.2.2	Serum samples	46
3.3.3	ELISA Test for Identification of ILTV	47
3.3.3.1	Processing of Samples for ELISA Test for ILTV	47
3.3.3.1.1	Reagent preparation of ELISA Kit for ILTV	47
3.3.3.1.2	Preparation of collected serum samples	48
3.3.3.1.3	ELISA test procedure for ILTV	48
3.3.4	Real-Time PCR	50
3.3.4.1	Extraction of viral DNA	50
3.3.4.2	qPCR program(qPCR method for Identification of ILTV)	52
3.3.4.3	RT-PCR Protocol for amplification of ILTV DNA	53
3.3.5	Isolation of the virus	53
3.3.5.1	Processing of tissue samples for isolation	53
3.3.5.2	Inoculation of processed samples in embryonated eggs	54
3.3.5.3	Processing of chorioallantoic membrane	55
3.3.5.4	Processing of infected CAM for PCR	55
3.3.5.5	Processing of infected CAM for histopathology	55
3.3.6	Method of DNA sequencing	56
3.3.6.1	PCR design	56
3.3.6.2	Nucleic acids sequencing of PCR amplicon	57
2262	DI 1 (' A 1 '	
3.3.6.3	Phylogenetic Analysis	57
3.3.6.4	Construction of a comprehensive phylogenetic tree	58

3.7	Experimental Infection in Layers	59
3.7.1	Experimental Design	59
3.7.2	Virus inoculation	59
3.7.3	Virus Confirmation in Inoculated Layers	59
3.7.3.1	Serum samples collection and processing	59
3.7.3. 2	Tissue samples collection and processing	60
3.8	Analyzing the Data Statistically	61

CHAPTER FOURE

Results

4.1	Historical background of the farms	62
4.2	Clinical Signs	62
4.3	Post mortem Findings	64
4.4	Identification of ILTV in blood sample	66
4.5	Distribution of ILTV with regions in Diyala	66
4.6	Detection of ILTV from tissue sample using	71
	RealTime PCR.	
4.7	Isolation of the virus on CAM	74
4.8	Sequencing analysis	76
4.9	Phylogenetic Analysis	80
4.10	Experimental Infection	85
4.10.1	Clinical Signs	85
4.10.2	Postmortem Findings	85
4.10.3	Serological Findings (ELISA)	86
4.10.4	Real-Time qPCR(RT-PCR)	87
4.10.5	Histopathological Findings	88
4.10.5	Histopathological results of larynx and trachea	88
4.10.5.1	Histopathological results of the larynx	89
4.10.5.1.1	The histopathological changes of the larynx after 24 hours	89
4.10.5.1.2	The histopathological changes of the larynx after 48 hours	90
4.10.5.1.3	The histopathological changes of the larynx after 72 hours	91

4.10.5.2	Histopathological results of the trachea	92
4.10.5.2.1	The histopathological changes of the trachea after 24 hours	92
4.10.5.2.2	The histopathological changes of the trachea after 48 hours	93
4.10.5.2.3	The histopathological changes of the trachea after 72 hours	94
4.10.5.2.3	Histopathological results of the chorioallantoic membrane	96

CHAPTER FIVE

Discussion

5	Discussion	99
5.1	Seroprevalance of ILTV in layer commercial flock according to age and location.	102
5.2	Detection of ILTV from tissue samples using Real-Time PCR.	104
5.3	Isolation of ILTV by ECE in CAM	106
5.4	Sequencing of ILTV	107
5.5	Experimental infection in layers.	111
5.5.1	Clinical signs	111
5.5.2	Postmortum examination	112
5.5.3	Detection of IgG antibody after experimental infection by using ELISA.	113
5.5.4	Real-Time PCR detection for tissue from expremintal infection.	114
5.5.5	Histopathological changes in the larynx,trachea of expremintal infection.	114

CHAPTER SIX

Conclusion and Recommendation

6	Conclusions and Recommendation	117
6.1	Conclusions	117
6.2	Recommendation	118
	References	125
	Summary in Arabic	

List of Tables Chapter Three Materials & methods

Serial No.	Title	Page No.
3. 1	the apparatus, instruments and equipment that used in current study	41
3.2	ELISA kit utilized in these studies	43
3.3	Component of ELISA KIT	43
3.4	Contents of PCR Kit of infectious Laryngotracheitis virus.	43
3.5	Oligonucleotide primers used in the detection ILT	44
3.6	Number of serum samples collected from chickens, their location and age of infected layers	47
3.7	Preparing 100µl of probes master mix	52
3.8	Preparing of Master mix of Go Taq probe qPCR reaction	53
3.9	Real-time program for detection of ILTV	53

Chapter Four Result

4.1	Seroepidemiology of Infectious Laryngotracheitis in Diyala	70
	province.	
4.2	Results of RT-qPCR for detection of ILTV were positive for	72
	field isolates.	
4.3	Results of RT-qPCR for detection of live attenuated ILTV	73
	vaccine of the same samples.	
4.4	RT-qPCR for detection of ILTV performed of CAM infected	76
	with ILTV.	
4.5	The position and length of the 247 bp PCR amplicon that	78
	was used to amplify a portion of the coding sequences of the	
	UL22 gene within Gallid alphaherpesvirus 1 genomic	
	sequence (acc. no. MK895003.1 of GenBank). Cited from	
	NCBI	
4.6	Results of RT- PCR applied on Trachea and Larynx tissue	88
	samples collected from experimentally infected layers with	
	ILTV.	

List of Figures Chapter Two Review of Literatures

Serial No.	Title	Page No.
2.1	DNA genomic structure of the virus (Gowthamana et al.,	9
	2020)	
2.2	The virus replication cycle of ILT started by attachment of the virus to cytoplasmic membrane of susceptible cell (1) followed by viral transport and uncoating (2), releasing of viral DNA in nucleus (3), transcription and translation of early and late proteins (4), envelope generation (5), gating the second envelope from ER (6), finally exocytosis or cell lysis to release of the virus (7). (Gowthamana et al., 2020).	13
2.3	Modes of ILTV spreading (Gowthamana et al., 2020)	17
2.4	Showed the spread and distribution of ILT among different countries worldwide since 2013. (Menendez, et al., 2014).	23

Chapter Three Materials & Methods

3.1	Experimental design of present stud Exp.Inf=Experimental infection, +Ve=Positive, -Ve=Negative	39
3.2	Design of experimental infection in layers	40

Chapter Four Results

4.1	Conjunctivitis of different severity in layers infected with ILTV	63
	field strain.	
4.2	Infected layers with ILTV showed "pump handle respiration" in which the neck of bird was elevated and the head stretched during	64
	inhalation in extreme situations.	
4.3.	Congestion of trachea with blood clot of layer infected with field ILTV.	65
4.4	(A)Many tracheas from ILTV infected layers. (B&C)Congested	65
	tracheas filled with blood clots, observed in postmortem of infected	
	layers with ILTV field strain. (D) Congested mucus membrane	
	lining of trachea with formation of diphtheritic clot or membrane	
	caused by ILTV in layers.	

4.5	Anti-ILTV IgG rate by age group in infected commercial layer flocks of all five districts at the age of (70) days old in Diyala Province* significance at P<0.05	68
4.6	Anti-ILTV IgG rate by age group in infected commercial layer flocks of all five districts at the age of (120) days old in Diyala Province*significance at P<0.05	69
4.7	Anti-ILTV IgG rate by age group in infected commercial layer flocks of all five districts at the age of (180) days old in Diyala Province. *significance at P<0.05	69
4.8	qRT-PCR demonstrates the detection of ILTV nucleic acid in tracheal & Larynx samples from layers suspected of having ILTV from flocks of Diyala province (Alkales, ALgalibia, Kanaan, Baqubah and Khan Bani Saad) utilizing smart cycle fluorography.	72
4.9	qRT-PCR demonstrated the detection of attenuated isolates of live vaccine 0f ILTV in tracheal & Larynx samples from layers suspected of having ILTV from flocks of Diyala province (Alkhales, ALgalibia, Kanaan, Baqubah and Khan Bani Saad) utilizing smart cycle fluorography.	73
4.10	infected CAM with isolated ILTV from homogenate infected field samples (A) pock lesion (black arrow) on CAM. (B) Formation of pock mother lesion and other small pock lesions (black arrow) on infected CAM of embryonated hen's egg Inoculated with ILTV from field samples.	74
4.11	Formation of pock mother lesion on infected CAM of embryonated hen's egg Inoculated with ILTV from field samples. A & B showed congested area with thickening at the site of pock lesion formation.	75
4.12	Control CAM from embryonated hen's egg inoculated with 0.1 ml sterile PBS. The figure showed very clear blood vessels without congestion.	75
4.13	Real-Time result for CAM infected with isolated ILTV from infected flock samples(trachea&larynx).	76
4.14	Within Gallid alphaherpesvirus genomic sequences, the precise location of the obtained 247 bp amplicon partially encompassed a section of the UL22 gene (GenBank acc. no. MK895003.1). The blue arrow denotes the amplicon's beginning, while the red arrow designates its termination.	77
4.15	Alignment of a single sample's nucleic acid sequences with the 247 bp amplicon of the Gallid alphaherpesvirus 1 UL22 sequences' matching reference sequences. The letters "S" are the NCBI referencing sequence, and the number after the symbol "ref" is the sample number.	79
4.16	The sequences of the UL22-encoded envelope glycoprotein H in	80

	the sample A of the Gallid alphaherpesvirus that infects poultry were examined for amino acid residue alignment. According to their appropriate locations within the amplified 247 bp locus, the amplified amino acid sequences are indicated. B). In accordance with their relevant locations within the complete protein, the substituted amino acids are highlighted. The UL22-encoded protein's amplified area is shown by the grey highlights.	
4.17	A: The detailed rectangular cladogram phylogenetic analysis of gene data of the UL22 dna fragment of Gallid alphaherpesvirus 1 sample, which infects chickens. The triangle in black represents the examined viral variations. All of the numbers were the GenBank accession numbers for the corresponding species. The complete tree classified creatures' level of scale range is shown by the number "0.1" at the top of the tree. The sample under investigation has a code that starts with the letter "S#."	83
4.17	B. The detailed circle cladogram phylogenetic analysis of genetic variations of the UL22 gene fragment of Gallid alphaherpesvirus 1 sample, which infects chickens. The triangle in black represents the examined viral variations. All of the numbers were the GenBank accession numbers for the corresponding species. The comprehensive tree's topmost category of creatures is indicated by the number "1," which denotes the level of scale range. The sample under investigation has a code that starts with the letter "S#."	84
4.18	Clinical signs of experimental infection of layers with ILTV. (A&B) Showing mild conjunctivitis and gasping after 2days post infection.(C)Show advanced conjunctivitis after 3 days post infection.(D) control eye without infection.	85
4.19	Postmortem findings in layers experimentally infected with field strain of ILTV. (A) Showed slight congestion in trachea (1&2) days PI. (B&C) advanced congestion of mucous membrane of trachea (3 days PI). (D) Control layers showed clear and clean trachea processed (3) days PI from control group.	86
4.20	anti-ILTV antibodies titer of experimentally infected layers at ages of 7, 14 and 21 days PI. The ages of tested layers were at the time of serum samples collection 78, 85 and 92 days.	87
4.21	qRT-PCR demonstrates the detection of ILTV nucleic acid in tracheal & Larynx samples from layers experimentally infected with ILTV utilizing smart cycle fluorography.	88
4.22	Photomicrographs show the histological changes in the larynx of chickens infected with ILT after 24 hours. (A) indicates a normal larynx lined by a ciliated, pseudostratified columnar epithelium encompassing numerous, simple alveolar mucous glands, whereas (B) showed the presence of intraepithelial syncytial cells in the	89

	laryngeal mucosa that contained intranuclear inclusion bodies (black arrows) and multiple nuclei were diagnostic for ILT (red arrows), (40X, H&E).	
4.23	Photomicrographs show the histological changes in the larynx of chickens infected with ILT after 48 hours. (A) The presence of intraepithelial syncytial cells in the larynx that contained intranuclear inclusion bodies (black arrows) and multiple nuclei (red arrows) was diagnostic for ILT. There were sloughed epithelial cells with intranuclear inclusions in the lumen along with hemorrhage (h) and congestion (co). Additionally, the pseudostratified columnar epithelial cells were inflated and disorganized.(B) depicts an obvious deterioration of the mucus gland and epithelium. in the infected larynx and infiltrated with mononuclear inflammatory cells (in), 40X, (H&E).	90
4.24	Photomicrographs show the histological changes in the laryngeal mucosa of chickens 72 hours after experimental infection with ILT. (A, B) The presence of exudate and sloughed epithelial cells with intranuclear inclusions in the laryngeal lumen along with hemorrhage (h) and congestion. Along with being inflated and disordered, the pseudostratified columnar epithelial cells demonstrated an obvious deterioration in the epithelium and mucus gland in conjunction with significant invasion with polymorphonuclear leukocytes (in) and congestion (co) (10X) (H&E).	91
4.25	Photomicrographs show the histological changes in the laryngeal mucosa of chickens 72 hours after experimental infection with ILT. (A, B) The presence of exudate and sloughed epithelial cells (sl) with intranuclear inclusions in the laryngeal lumen along with hemorrhage and congestion. Additionally, the pseudostratified columnar epithelial cells were inflated and disorganized, exhibiting pronounced inflammatory cell infiltration (in) and obvious epithelial and mucus glandular deterioration (de), (10X) (H&E).	92
4.26	Photomicrographs show the histological changes in the trachea of chickens infected with ILT after 24 hours. (A) indicates a normal trachea lined by a ciliated, pseudostratified columnar epithelium encompassing numerous, simple alveolar mucous glands, whereas (B) the presence of intraepithelial syncytial cells in the trachea that contained intranuclear inclusion bodies (black arrows) and multiple nuclei were diagnostic for ILT (red arrows), 40X, (H&E).	93
4.27	Photomicrographs show the histological changes in the trachea of chickens infected with ILT after 48 hours. (A) and (B) the presence	94

	of intraepithelial syncytial cells in the trachea that contained intranuclear inclusion bodies (black arrows) and multiple nuclei were diagnostic for ILT (red arrows), hemorrhage (h), inflammatory cells (in), congestion (co), 40X, (H&E).	
4.28	Photomicrographs illustrate the histological changes in the tracheal mucosa of chickens 24 hours after experimental infection with ILT. (A) Indicates normal trachea lined by a ciliated, pseudostratified columnar epithelium encompassing numerous, simple alveolar mucous glands, whereas (B) illustrates clear degeneration in the mucus gland and epithelium in the infected trachea (40X) (H&E).	95
4.29	Photomicrographs show the histological changes in the tracheal mucosa of chickens 24 hours after experimental infection with ILT. (A) The presence of intraepithelial syncytial cells in the trachea that contained intranuclear inclusion bodies and multiple nuclei was diagnostic for ILT. There were sloughed epithelial cells with intranuclear inclusions in the lumen along with hemorrhage and congestion (h). Additionally, the pseudostratified columnar epithelial cells were inflated and disorganized. (B) illustrates a clear degeneration in the epithelium and mucus gland in the infected trachea (40X) (H&E).	95
4.30	Photomicrographs illustrate the pathological changes of the chorioallantoic membrane in 11 days chick embryo (4-5 days after inoculation with ILTV). (A) Indicates normal chorioallantoic membrane tissues, whereas, (B) Shows epithelial hyperplasia and infiltration with inflammatory cells (black arrows). (A, B at 10X) (H&E).	96
4.31	Photomicrographs illustrate the pathological changes of the chorioallantoic membrane in 11 days chick embryo (4-5 days after inoculation with ILTV). A) Indicates normal chorioallantoic membrane tissues, whereas, (B) shows intranuclear inclusion bodies (black arrows) with epithelial hyperplasia and infiltration with inflammatory cells. (A, B at 40X) (H&E).	97
4.32	Photomicrographs illustrate the pathological changes of the chorioallantoic membrane in 11 days chick embryo (4-5 days after inoculation with ILTV). (A, B) shows intranuclear inclusion bodies (black arrows) with epithelial hyperplasia and infiltration with inflammatory cells (A, B at 40X) (H&E).	97
4.33	Photomicrographs illustrate the pathological changes of the chorioallantoic membrane in 11 days chick embryo (4-5 days after inoculation with ILTV). (A, B) shows intranuclear inclusion bodies (black arrows) with epithelial hyperplasia and infiltration with	98

inflammatory cells (in), congestion (co), and hemorrhage (h) (A, B at 40X) (H&E).

List of abbreviations

Abbreviation	Explanation / Meaning
AI	Avain influenza
Вр	base pairs
CAM	Chorioallantoic memberane
CEF	Chicken embyo fibroblast
CEL	Chicken embyo lung
CEO	Chicken embyo origen
Ct	Cycle threshold
DNA	Deoxyribonucleic Acid
DsDNA	Double strand Deoxyribonucleic Acid
ECE	Embryonated chicken egg
ELISA	Enzyme linked immune sorbent assay
GaHV-1	Gailld herpesvirus-1
H-E	Hematoxylin-Eosin stain
IBV	Infectious bronchitis virus
ICP4	Infected cell protein 4
IgG	Immunoglobulin G
IHC I	Immunohistochemistry
ILT	Infectious laryngotracheitis
ILTD	Infectious laryngotracheitis disease
ILTV	Infectious laryngotracheitis virus
IR	Inversion repeat
Kbp	Kilobase pairs
NCBI	National central for Biotechnology Information
ND	Newcastle disease
ORF	Open reading frame
P.I	Post infection
PBS	Phosphat buffer saline
PCR	Polymerase-chain Reaction
Pmol	Picomole
qRT-PCR	Quantitative Reverse Transcriptase Polymerase-
	chain Reaction
RFLP	Restriction fragment length polymorphism
Rpm	Rotation per Minute
RT-PCR	Real time polymerase chain reaction
TCO	Tissue culture origin
TR	Termial repeats

TRG	Trigeminal ganglion
UL	Unique long
US	Unique short

Introduction

1.1.Introduction

The poultry industry is expanding quickly and has an impact on world food security. Various illnesses have been spread through globalization, climate change, and an increase in the number of chickens. Among developing infections, infectious laryngotracheitis (ILT) posses a serious threat to poultry economical industry (Bagust *et al.*, 2000). Peafowl and pheasants have displayed spontaneous illness, despite the fact that poultry are the main target (Garca and Spatz, 2020; Gowthaman *et al.*, 2020; Oliga *et al.*, 2021).

Many bird species are immunized to ILTV infection such as, sparrows, pigeons, ducks and crows, but Galliformes are not (Guy and Garcia, 2008). Losses in productivity come from morbidity and mortality, lower weight gain, lower egg yield, immunization, biosecurity precautions, and cost of medication to avoid subsequent illnesses. These losses are reported by many authors (Jones 2010; Garcia *et al.*, 2014). There are two types of this viral disease of tracheitis in chickens that have been reported field levels: a difficulty in breathing, sneezing, expectoration of mucus mixed with blood, conjunctivitis and severe tracheitis of haemorrhagic type and, bird death ranged from five to seventy percent describe as the severe acute or epizootic form. A milder variant is characterized by moderate to mild to catarrhal tracheitis, and inflammation of sinuses (Kirpatrick *et al.*, 2006; Oldoni *et al.*, 2008; Ou and Giambrone, 2012).

Virus-free birds can carry GaHV-1 for years. This viral infection was reported to cause latency in central nervous system (CNS) (especially trigeminal ganglions) after seven days of severe infection

1

(Gowthaman *et al.*, 2020). The disease was first described in the US by May and Thittsler in 1925, then followed by in Australian country, United Kigdom, and then in European countries (Cover, 1996). ILT was approved in 1931 by USA Veterinary Association (Guy and Garcia, 2008). The use of a cloacal immunization against ILT was a first for a chicken virus (Gibbs, 1934).

The ILT disease is caused by Gallid herpesvirus-1 which grouped in subfamily *Alphaherpesvirinae* that classified within family of herpesvirus (*Herpesviridae*). It is contained 150 kilobase pairs of dsDNA encode eighty proteins of the virus as reported by Menendez *et al.* (2014). ILT virus (ILTV) infection produces a severe respiratory disease with varied fatality. Unwell birds, dust that is tainted with the virus, garbage, water, wind and utensils can transmit viruses. Natural infections incubate for 6-14 days and the strain of the virus and presence of co-infection in respiratory tract of infected determine the infection severity (Garcia and Spatz, 2020; Gowthaman *et al.*, 2020).

Cell mediated immunity and antibody responses in infected birds are stimulated by the enclosing glycoproteins of ILT (York and Fahey, 1990). It is believed that ILTV glycoproteins are essential for both entrance of the virus and its replication as reported by Goraya *et al*, (2017). The disease is very hazardous and has been reported in almost every country between 2000 and 2013, the disease was documented in a number of countries throughout the world (Menendez *et al.*, 2014). In Al-Diwaniyah, Iraq , ILTV was recently molecular proven (Alaraji *et al.*, 2019; Al-Saadi, 2022).

There were many outbreaks of ILT in Windhoek, Namibia, in 2018 resulted in devastating layer and broiler mortality (Molini *et al.*,

2019). Inadequate vaccination, biosecurity breaches, dealing with condensed layer flocks, using short cycles of production, and using of layer flocks with multiple ages and multifunctional poultry in the same location, all contribute to an increase in ILT outbreaks (Garcia *et al.*, 2019; Blakey *et al.*, 2019).

Since middle of the 1920s, ILT has been a menace to the world poultry industry. All birds, regardless of age, from 8 days to 4 years, can contract the ILTV virus (Linares *et al.*, 1994). Birds older than three weeks are more sensitive (Dufour-Zavala, 2008). ILT pathogenicity, viral dose, and co-infections with other respiratory diseases have an influence on morbidity and death. ILT outbreaks are frequently brought on by intensive chicken husbandry, mixing several bird species in one region, and inadequate biosecurity (Guy and Garcia, 2008). Iraqi Taha *et al.* (2016) isolated the virus on chorioallantoic membrane (CAM) and discovered ILT antibodies in non-vaccinated layers in Baghdad (Taha *et al.*, 2017). Using PCR, Mohammed *et al.* (2019) reported ILTV in Baghdad layers.

Numerous ILT outbreaks were unofficially recorded in Diyala Province, but no research was done to identify the disease and its cause. Furthermore, since the virus may induce latent infection, no layer farm utilized the ILT immunization program, making it impossible to claim that the disease was caused by vaccination. As a result, this research was designed:

1.2.Aims of Study

1. Detection of ILTV virus in Diyala farms through:

A.Serological identification of (ILTV) of some flocks of layer in Diyala Governorate.

B.Detection of ILTV by molecular test(RT-PCR) performing on some flocks of layer in Diyala Governorate by the use of specific primers that can find out its origin as a vaccine strain or not.

C.Sequencing and Phylogenetic analysis of the detected ILTV to find out the relatedness of local Iraqi strains and references strains from Genebank (NCBI).

D.Experimental infection in layers by isolated ILTV in CAM after confirmed by RT-PCR.