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Abstract 

         Nanoparticles of Mn1-xZnxFe2O4 have been prepared by co-precipitation 

method and followed by heat treatment in hydrothermal autoclave reactor; 

where x varied from 0 to 0.5, with amount of change 0.1 in every experiment. 

XRD results showed that it was difficult to prepare MnZn-ferrite directly by 

using the coprecipitation method. Field emission scanning electron 

microscopes (FESEM) images confirmed that the preparation method 

produced spherical nanoparticles with a slight change in the particle size 

distribution. The particle size has shrunk after the heat treatment. The average 

particle size had estimated to be about 20 nm. 

   Fourier Transform Infrared Spectroscopy (FTIR) spectra of samples showed 

two distinct absorption bands, the band at ~ 617(cm-1) and the ~426 (cm-1) 

attributed to the tetrahedral and octahedral site respectively. The absorption 

bands of the tetrahedral site slightly shifted towards high frequency with 

increasing zinc content. 

   According to a magnetic measurement, the study indicated that the size of 

particles was sufficiently small to behave superparamagnetically, the 

hysteresis loop curves perfectly matched, that evidence the formation of 

typical soft magnetic materials. 

   The heating efficiency of water-based ferrofluid studied under magnetic 

field strength 6.5kA/m and the frequency 190 kHz. The results showed that 

the heating rate of ferrofluid samples (x=0.3, 0.4 and 0.5) was not changed. 

Also, constancy of temperature at 44  when x=0.1 made it favoring for 

hyperthermia treatment as self-regulate magnetic nanoparticles. Depending on 



 
 

the increase in the heating curve, the susceptibility, effective relaxation time 

and Néel relaxation time were determined. 

      The second series of nanocrystalline  (where x = 0.0, 

0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) powder has been synthesized by co-precipitation 

method followed by heat treatment in an autoclave reactor. Identifying and 

structural characterization of samples had been carried out by using X-ray 

diffraction. The results demonstrated that all the samples have spinel structure 

and the zinc ions are engaged within spinel structure. As well as, it is revealed 

that the pure single phase has been obtained. FE-SEM images had revealed 

that all samples have homogeneous spherical shape with narrow distribution 

of the particles size ( 20nm). FTIR spectra of  samples 

showed two distinctive absorption bands lie in the region ~561 and ~376 cm-1, 

which indicates formation of spinel structure for ferrite. 

   Magnetic measurements were performed at room temperature by VSM on 

both types of samples; condensed nanoparticle (bulk) and nanoparticles that 

dispersed in paraffin wax. Both types of samples showed negligible coercivity 

and remanent magnetization. As it revealed the presence of unblocked 

superparamagnetic nanoparticles in the samples at defined temperature. A 

significant variation of saturation magnetization was noticed by changing the 

zinc content in the structure, and highest value has gained at x=0.5. Then 

saturation magnetization gradually decreased with the increase in zinc content. 

    Heating efficiency of water based ferrofluid samples carried out through 

hyperthermia experiments. It tested under an alternating magnetic field 6.5 

kA/m and frequency 270 KHz, the  results showed that the intrinsic loss power 

(ILP) had doubled at x=0.3 as compared with magnetite.   
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Chapter One 

Introduction and Literature Review 

1.1 Introduction 

    Nanotechnology deals with small structures or small-sized materials. The 

typical dimension spans from sub-nanometer to several hundred nanometers. 

A nanometer (nm) is one billionth of a meter, or 10-9 m. Materials in the 

nanometer scale may exhibit physical properties distinctively different from 

that of bulk. In the United States, nanotechnology has been defined as being 

“concerned with materials and systems whose structures and components 

exhibit novel and significantly improved physical, chemical and biological 

properties, phenomena and processes due to their nanoscale size [1]. 

     Magnetic nanoparticles (MNPs) are one of the most important categories of 

nano-materials which are magnetically unique. The most important features 

magnetic nanoparticles are; high field irreversibility, high saturation region, 

Superparamagnetism, extra anisotropy and temperature-depended hysteresis, 

etc [2]. 

    The magnetic nanoparticles for bio-applications have piqued interest to 

researchers due to their close dimensions to the biological entities and special 

magnetic properties. Despite the fact that most living organisms are consisting 

of cells that are around 10 μm in size, the cell's dimensions are frequently 

much smaller, typically in the nanoscale. For examples the dimensions of 

genes are 10–100 nm in length and 2 nm in width, proteins ranged in size from 

5 to 50 nm, while viruses were 20 to 450 nanometers [3]. 

    The dimensions of synthetic magnetic nanoparticles can be regulated, and 

nanoparticles as small as a few nanometers in diameter can be synthesized 
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using specifically designed experimental procedures and carefully controlled 

reaction conditions. With the advent of nanoscale the magnetic nanoparticle 

became an interest, especially as its dimensions get close or smaller than 

biological entities [4]. 

    Furthermore, covering nanoparticle with biomaterials prevents the 

interaction between nanoparticle and biological entities in addition to 

enhancing their suitability for biomedical applications, a process known as 

bio-functionalization.  It allows a more precise method of 'tagging' or 

resolving nano-scale linking. Magnetic nanoparticles had been used as really 

quite sensitive sensors to observe physiological systems at the cellular scale 

without interfering with them. In fact, because of their noninvasive nature, 

magnetic and optical effects have been regarded as the most effective methods 

for biological applications [5]. 

    Magnetic nanoparticles (MNPs) generate heat when exposed to an 

alternating magnetic field. As a result, MNPs are used in the treatment of 

cancer with magnetic fluid hyperthermia (MFH), and have been shown to 

increase the efficacy of chemotherapy and/or radiation treatment in clinical 

trials. Owing to inadequate MNPs, uneven distribution of MNPs in the tumor, 

or heat loss to the nearby region, current MFH treatment was unable to 

provide adequate heat to the tumor [6]. 

1.2 Literature Review 

   Magnetic nanoparticles are widely used in biomedical applications. The 

benefit of this kind of nanoparticle is that, it can be controlled by a magnetic 

field. So it can be used as a drug delivery and, magnetic resonance 

imaging (MRI) contrast. Magnetic nanoparticles produce heat when subjected 
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to an alternating magnetic field; as a result, they are used in hyperthermia. 

Ferrofluid consist from the dissipation of magnetic nanoparticles in suitable 

carrier liquid, which should be stabilized in a liquid using the proper 

surfactant [7]. 

    Many researchers worked on different types of magnetic nanoparticles to 

study the physical properties; shape and size of nanoparticles, crystal structure, 

and heat released. The following are a few notable works that dealt with 

concern of the thesis: 

     Fortin et al. (2007) synthesized maghemite and cobalt ferrite nanoparticles 

of various sizes ranged from 5 to 20 nm dispersed in water and other solvent 

formed from water and glycerol with various viscosities they attempted to 

differentiate between the Néel and Brown contributions in the energy 

production. Specific absorption rate (SAR) values of cobalt ferrite and 

maghemite samples were measured under alternating magnetic field with 

frequency (f =700 kHz) and amplitude (H = 24.8 kA.m-1).  They attributed 

higher SAR values to Brownian friction in cobalt ferrite while Néel relaxation 

mechanism in maghemite nanoparticles led to higher SAR values. The SAR 

values ranged from 4 to 1650 W/g with increasing particle size of maghemite 

from 5.4nm to 16.5nm [8]. 

    Pradhan et al. (2007) studied on a series of superparamagnetic nanoparticles 

of magnetite, manganese and cobalt ferrites. Nanoparticles were coated with 

lauric acid and assessed their thermal efficiency and biocompatibility to test 

whether they could be used in cancer hyperthermia therapy.  The particles in 

all of the magnetic fluids were 9–11 nm in size on average. The calorimetric 

measurements of SAR values was assessed at frequency 300 kHz and field 15 

kA/m to investigate the heating efficiency of magnetic fluids. They found that 
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the SAR values were higher in magnetite (120 W/g) and manganese ferrite (97 

W/g) than in cobalt ferrite 37 W/g [9]. 

     Joshi et al. (2009) synthesized the cobalt ferrite magnetic nanostructures 

via seeded growth thermal decomposition. Seed mediated growth of 

nanocrystals in the organic phase was used to create spherical nanostructures 

of different sizes, whereas faceted irregular (FI) CoFe2O4 nanostructures were 

produced using the similar procedure but, under applied magnetic field and 

nanoparticles dispersed in water. The study found that the spherical 

nanoparticle is superior to faceted irregular equivalents in saturation 

magnetization (Ms), as well as the magnitude of Ms increased with size. SAR 

experiments were made with RF generator at a power of 5 kW and frequency 

of 300 kHz. The specific absorption rate (SAR) of nanostructures has been 

observed to increase with increasing size, while cobalt ferrite (FI) showed less 

saturation magnetization and low SAR value than spherical nanostructures 

[10]. 

     Suto et al. (2009) used the coprecipitation method to prepare magnetite 

samples A and B; A sample had a diameter of 12.5 nm, while B had a 

diameter of 15.7 nm. Both Néel and Brownian relaxations were essential for 

the particles in heating process. A second collection of samples was made 

using a polyvinyl alcohol hydro-gel to disperse equal solid concentrations. 

The magnetic moment was only relaxed by Néel relaxation for the dispersed 

samples in the gel because nanoparticle motion was limited. SAR calculations 

were recorded at frequency 600 kHz with amplitude of 40 Oe. They 

discovered that heating mechanisms were dependent on particle dispersion 

states, and that specific absorption rates decreased as the viscosity of the 

medium increased due to reduced Brownian relaxation contributions [11]. 
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    Alphandéry et al. (2011) studied on the magnetotactic bacterium 

Magnetospirillum magneticum strain AMB-1 when it is subject to the same 

magnetic field, the researchers investigated the mechanisms of heat generation 

by entire cells and individual magnetosomes. The individual magnetosomes 

showed higher SAR values compared to intact cells. The higher SAR values 

are attributed due to rotation of magnetosomes nanoparticles in the magnetic 

field [12]. 

    Hugounenq et al. (2012) developed innovative nanostructures for high 

efficiency magnetic hyperthermia exceed of the superparamagnetic size range. 

When the synthesis was performed in a combination of N-

methyldiethanolamine and diethylene glycol, the alkaline hydrolysis of iron 

(III) and iron (II) chlorides produced nanoparticles with flowerlike shape. 

Under such experimental circumstances, flowerlike nanostructure was caused 

by the arrangement of nanoparticles having sizes about 11 nm. The 

propagation technique allows for modulation of the nanoflower's size, 

magnetic properties and polycrystalline character, resulting in a significant 

increase in their heat, with the highest value SLP = 1944W/g for flower-like 

maghemite nanoparticles with a diameter of 28nm. It studied under an 

alternating magnetic field with frequency 700 kHz and an amplitude 21.5 

kA/m [13].   

    Guardia et al. (2012) investigated the hyperthermia properties of cube-

shaped iron oxide nanocrystal samples prepared by thermal decomposition in 

various sizes (12, 19, 25, 38) nm, with regular-shaped nanocubes acquired at 

19,25nm. The SAR values for the different iron oxide nanocrystal sizes 

studied at different frequencies and magnetic field amplitudes showed that 19 

nm sample performed the best under all experimental conditions. At 520 kHz 
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and 29 kAm-1, SAR values achieved 2452 W/gFe, that is one of the maximum 

power ever recorded for iron oxide nanoparticles. In vitro tests on KB cancer 

cells treated with 19 nm iron oxide nanocrystals (IONCs) revealed effective 

hyperthermia results. After an hour of hyperthermia treatment at a temperature 

43 °C, cell mortality was about 50% [14]. 

     Veverka et al. (2014) used the co-precipitation method to make magnetic 

cores of Co0.4Zn0.6Fe2O4 of two different sizes, which were annealed at 

temperatures of 500 °C and 650 °C. The nanoparticles were encapsulated in 

silica, which resulted in colloidally stable water suspensions. The increase of 

annealing temperatures had caused a significant rise in Curie temperatures (Tc) 

and blocking temperature (TB), additionally the heating efficiency of sample 

had been enhanced [15]. 

   Blanco et al. (2015) synthesized citric acid coated iron oxide magnetic 

nanoparticles with the benefit of microwave and provided an effective, 

controllable, and easily scalable method to manufacture multi-core structures 

for magnetic hyperthermia purposes. A decreasing hydrodynamic diameter 

had occurred as the concentration of citrate ions in solution increases (DH). 

The core radius and the overall hydrodynamic width of the multi-core particle 

have been considered to be significant structural factors in magnetic heating 

efficiency. Large cores in small ensembles (DH = 65 nm) produced the best 

results [16]. 

     Fantechi et al. (2015) synthesized CoxFe3-xO4 nanoparticles with an 8 nm 

size using a thermal decomposition method. They noticed that the increase in 

concentration of Cobalt would significantly increase the SAR values. The 

SAR goes up with x, and it peaks at x=0.6. The intrinsic magnetic properties, 
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especially the magnetic anisotropy were thought to be responsible for this 

behavior [17]. 

    Aneja et al. (2017) used a hydrothermal process to synthesize 

superparamagnetic La0.77Sr0.23MnO3 nanoparticles with diameter of 18 nm. 

The pseudo-cubic perovskite crystalline nature was confirmed by structural 

analysis. The superparmagnetic behavior of the prepared particles was 

revealed by M-H hysteresis curve. Various concentrations of distilled water 

(2–20 mg/mL) were used. They founded that the hyperthermia temperature 

42–43°C can be reached with a concentration less than 3 mg/mL under 

experimental conditions (frequency of 267 kHz and an amplitude 293.3 and 

335.3 Oe) [18]. 

     Srivastava et al. (2018) used quite stable, quick, and one-step microwave 

refluxing method to synthesize  spinel type structure, where x 

varied from 0.01 to 0.8.  TEM analysis revealed that the particles were 

between 3 and 11 nm in size. Ferrofluid samples were prepared by dissolved 

magnetic nanoparticles in different carrier medium; water (4mL) and oleic 

acid (8 mL). For 20 minutes at , this solution was continuously stirred. 

Every ferrofluid had a 42 mg/mL MNPs concentration. For the sample with x 

= 0.2, the maximum SAR value was recorded at frequency 478 kHz with field 

strength 11 mT. The higher SAR value was attributed to higher Ms value [19]. 

    Mello et al. (2019) reported the synthesis of ZnxMn0.4 - xFe0.6 Fe2O4; were x 

changed from 0 to 0.4 using the co-precipitation process, and the existence of 

poly ethylene glycol (PEG) at 353K. The presence of PEG ensures the size of 

the nanoparticles ranging from 10 to 15 nanometers. Hyperthermia 

measurement had performed on ferrofluid samples with concentration 10 
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mg/ml in a citric acid solution with a pH of 5. Additionally the experiment 

carried out at magnetic field strength 25 mT and frequency 112 kHz. The 

results showed Zn additions decreased the hyperthermia efficiency, as well as 

the magnetic hyperthermia factor had been attributed primarily to the Néel-

Brownian relaxation mechanism [20]. 

    Shaw et al. (2019) had used microwave-assisted polyol process to create 

magnetic nano-flowers with the mean diameter of 50nm and a blend of seed 

(MnFe2O4) and soft magnetic phases (γ-Fe2O3). The nano flowers 

outperformed MnFe2O4 single cores in terms of heating efficiency and 

magnetic properties. Nanoflowers had a three-fold higher ILP value (3.30 

nHm2 Kg-1) than single core MNPs when subjected to an alternating magnetic 

field with a frequency of 113 kHz and amplitude of 250 Oe. The ILP obtained 

value was higher than that of magnetic colloids marketed commercially. The 

HeLa cells were killed significantly by the hyperthermia treatment with a 

concentration of 0.75 mg/mL for 30 minutes, and their viability was reduced 

by up to 17% [21]. 

    Dhumal et al. (2019) prepared citric acid coated nanoferrites having 

composition Fe1-xMnxFe2O4 (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) by 

chemical co-precipitation method. Samples (5 mg/ml of distilled water) were 

put in the coil's middle, with a frequency of 289 kHz and changing amplitudes 

of field to 167.6, 251.4 and 335.2 Oe. The SAR varies in a similar manner to 

saturation magnetization (Ms). SAR reached a maximum (100W/g under field 

amplitude 335.2 Oe) when x=0.7 it is observed that the value increased by 

20% in Fe0.3Mn0.7Fe2O4 as compared to Fe3O4 [22]. 

    Kowalik et al. (2020) prepared yttrium-doped of magnetite by a co-

precipitation method by variable percentage of Y3+ (0, 0.1, 1, and 10%) ions. 
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The experiments had been made to increase the heating abilities for magnetic 

hyperthermia. The excellent results were obtained for the ILP values which 

equals 1.85 nHm2/kg  at 0.1% Y3+ ions doping in Fe3O4 [23]. 

   Gu et al. (2020) studied two types of magnetic nanoparticles; -Fe2O3 and -

Fe2O3 with similar size of the same size (20 nm).  The heating efficiency of 

uncoated and polymer-coated samples was measured over a broad range of 

field amplitude and frequency.  In medium with a viscosity comparable to that 

of cell cytoplasm, -Fe2O3 nanoparticles were observed to heat primarily in 

the low-frequency range (20–100 kHz). At high frequency range (400–900 

kHz), on the other hand, -Fe2O3 nanoparticles heat more effectively [24]. 

   Rajan et al. (2020) conducted an investigation on magnetite (Fe3O4) 

nanoparticles coated with various surfactants such as cetyl-trimethyl 

ammonium bromide (CTAB), citric acid (CA), ethylene diamine (EDA), 

polyvinylpyrrolidine (PVP), polyethylene glycol (PEG), and glutamic acid 

(GA). It is prepared by using the co-precipitation process, and their inductive 

heating efficiency for hyperthermia applications is compared. The results 

showed that there is considerable discrepancy in magnetic anisotropy, 

magnetic susceptibility and magnetic relaxation time. As a result, these 

findings open up a lot of possibilities for developing surface coated magnetite 

NPs for hyperthermia applications [25]. 

     Manohara et al. (2020) synthesized of CoFe2O4 nanoparticles using the 

solvo-thermal reflux method. Under biocompatible alternative magnetic field 

limitations, the peculiarity of magnetic hyperthermia in cobalt-ferrite was 

tested. Heating ability’s of magnetic ferrofluid for CoFe2O4 at concentration 3 

mg/mL can be reached up to 185.32 W g−1, this count was greater than those 
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of other SAR that recorded by other methods for synthesized CoFe2O4 

nanoparticles [26]. 

1.3 Aims and Objectives 

 Synthesis of Mn1-xZnx Fe2O4 nanoparticles where x=0-0.5 with a step of 

0.1 by using a co-precipitation method and, study the effect of zinc 

replacement on the structural properties, magnetic properties, and 

heating efficiency of ferrofluid samples. 

 Studying the influence of zinc replacement in magnetite structure on the 

structural properties, magnetic properties, and the heating efficiency     

of magnetite for hyperthermia through synthesis 

of nanoparticles where x = 0.0, 0.1, 0.3, 0.5, 0.7, 

0.9, and 1.0.  


