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Abstract 
 
Promotion of renewable energy sources like solar, wind for responding to 

increasing global energy demand requires efficient means to correct their 

intermittent nature. Latent Heat Thermal Storage (LHTS) based on Phase 

Change materials (PCMs) offers a promising solution for efficient utilization of 

intermittent energy from renewable sources. However, the primary limitation is 

the poor thermal conductivity of PCMs, which requires employing of thermal 

performance enhancement techniques. To overcome this deficit, an open-cell 

structure with a high porosity copper foam is employed to enhance the overall 

thermal conductivity of PCM, leading to improved heat transfer exchange, and 

hence, promoting the PCM charging rates. This enhancement technique has 

been utilized to improve the LHTS performance having a shell and tube 

structure filled with PCM, where a copper foam is compounded to the PCM. 

For this purpose, an experimental setup was fabricated to examine the heat 

transfer performance on two shell-and-tube LHTS configurations: pure PCM-

LHTS (pure LHTS) and PCM-copper-foam composite (foamed LHTS). The 

experimental observation is supported by computational models that allow the 

investigation of heat transfer performance, and track the phase change interface 

during melting. The numerical simulation was done using ANSYS fluent 

(version 19) CFD. The thermal behavior of LHTS configurations was 

investigated in terms of temporal evolution of PCM temperature in different 

axial and radial directions, PCM average liquid fraction, and thermal storage 

orientation at various inlet HTF temperatures. The heat transfer fluid (HTF) was 

flowing through the heat exchanger tube at different inlet temperature of 70 oC, 

75 oC, and 80 oC. Experimental observations showed that the foamed LHTS 

configuration has a better performance than that of pure LHTS, while the 

variation of HTF was found to have a major impact on the heat transfer rate 

with both configurations. As a result, the reduction in total charging time, which 
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from 360 min to 65 min is clearly observed because of the foam. The saving in 

total melting time of simple LHTS was about 82% with provision of copper 

foam. The saving in total melting time of foamed LHTS arrange vertically was 

about 34% for an HTF temperature increase from 70 oC to 80 oC. The saving in 

phase change time for horizontal foamed LHTS was about 19% higher than 

vertical LHTS at completed melting process. Therefore, the results suggest that 

horizontal LHTS is preferable for full load conditions rather than vertical 

LHTS. It is also observed that the highest rate of stored energy can be obtained 

at a higher HTF temperature for both LHTS orientations. The role of adding 

copper foam on the development of phase change cycle was confirmed by 

visual observation. 
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Chapter One 

Introduction 

1.1 Background 

The rapid development of human societies and economies has led to a 

significant increase in energy consumption in recent decades. The world's 

primary issue at the moment is reducing its reliance on the energy produced by 

fossil fuels burning, despite the several environmental repercussions, such as 

greenhouse gas emissions, which cause global warming, climate change etc. 

As a result, the focus has moved lately toward friendly renewable energy 

sources such as solar, wind and hydro. Solar energy is the best source of energy 

on a worldwide scale since it is simple and direct to use, renewable, has safe 

and environmentally beneficial, and abundantly free. Solar energy deployment, 

on the other hand, is hampered by the fact that it is only accessible during hours 

of the daytime. Thus, methods for effectively storing solar energy during the 

day and using it at night have been suggested. Thermal energy storage is a 

critical technique for ensuring the long-term viability of solar energy. 

      Thermal Energy Storage (TES) is a very successful way of balancing the 

mismatch between energy consumption and production. Also, TES can be 

incorporated into resources of renewable energy to be permanent. It is possible 

to avoid the imbalance between energy supply and energy demand by energy 

storage technology using TES. For these purposes, TES is used to store excess 

of renewable energy through high production hours and then use it during low 

production hours. 

Most phase change materials (PCMs) that are used as storage medium in 

TES systems, suffer from low thermal conductivity. This often leads to 

incomplete melting and solidification processes and also a significant 

temperature difference within PCM, resulting in material failure and system 

overheating. Practically, there are various engineering applications of PCMs in  
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these systems, such as building heating, water heating, solar systems, electronic 

cooling, drying technology, refrigeration and cold storage, air conditioning, and 

waste heat recovery [1]. 

1.2 Thermal Energy Storage System 

TES system is a technology that stores thermal energy by heating or cooling a 

storage material so that the stored energy can be used subsequently for heating 

and cooling applications and power generation. TES system uses a storage 

material to store heat during the charging process (melting), and then the heat 

will be released during the discharging process (solidification). 

TES system can be classified according to different storage mechanisms, 

into three main categories: sensible heat energy storage, latent heat energy 

storage, and thermochemical storage, Fig. 1.1 shows these categories [2]. 

 

 

          Fig.1.1 Classification of thermal energy storage [2] 

1.2.1 Sensible Heat Thermal Storage 

Sensible heat thermal storage (SHTS) is dependent on the amount of heat stored 

in the storage medium, which may be a solid or liquid that can be heated without 

charging its phase, as demonstrated in Fig. 1.2[3]. Metals, rock, and concrete 

are some of the solid medium utilized, while liquid mediums include oil-based 

liquids, including molten salts and water. The most often utilized storage 

medium is water, which may be used to store thermal energy in the form of 
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perceptible heat due to its abundance, low cost, high specific heat, and density 

[4]. 

 

 

Fig. 1.2 Sensible and latent heat storage [3] 

 

1.2.2 Latent Heat Thermal Storage  

Latent heat thermal storage (LHTS) is defined as the amount of heat 

released/stored material from a thermal storage medium using the phase 

transition of its. As illustrated in Figure (1.2), the storage process begins with 

sensible heat, which causes the material's temperature to change to its phase 

change temperature, while heat energy transferred to the storage material. The 

substance retains its constant state until the phase has been completely 

transformed. Due to the large storage capacity per unit volume/mass at a 

practically constant temperature, latent heat storage is more advantageous than 

sensible energy storage [5]. 

 

1.3 Applications of LHTS  

As compared to (SHTS), latent heat thermal energy storage has been shown to 

be a superior engineering choice due to its many benefits, such as high energy 

storage for a given volume, uniform energy storage/supply, and compactness  
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[6]. As a result, various configurations of LHTS units found widespread use in 

a variety of technical disciplines. 

The selection of PCM suitable for any application, the PCM should have 

a melting temperature within the applications realistic range. Numerous 

applications for PCMs have been suggested. Table 1.1 summarizes some of the 

application areas for which PCMs were chosen for research, as given by [7]. As 

shown in Table 1.2, the majority of research on phase change issues has been 

conducted within the temperature range of 0 65 oC, which is appropriate for 

residential cooling/heating.  

Table 1.1 Applications of LHTS systems [6] 
No. fields 

1 Solar based dynamic space power 
generation 

2 Solar thermal applications 

3 Industrial wasted heat recovery 
4 Automobiles 

5  Cooling of electronics 

6 Textless 

7 Passive heating of buildings 

8 Air conditioning  systems 
 

Table 1.2 Application of target areas for some PCMs [7] 
Temperature 

range(°C) 

PCMs studied/melting 

temperature(°C) 

Target applications area (rationale 

behind selection of (PCM) 

0-65(°C) Paraffins(-3-64), 
water/ice/0,stearicacid/41-43, 
n-octadecane/27.7 

Storage for domestic heating/cooling. Passive 
storage in bio-climatic building/architecture. 
thermal storage of solar energy. Applications in 
off-peak electricity for cooling and heating 
protection of electrical devices. 

80-120(°C) Erythntol/117.7;RT100(99) 
;MgC .6 O(116.7) 

Storage for the hot-side of LiBr/  absorption 
cooling system with generator temperature 
requirement of less that 120(°C). 

>150(°C) NaN /310,KN /330 
,KOH/380,ZnC /280 

Storage for solar power plants based on 
parabolic trough collectors and direct steam 
generation. 
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1.4 Problem Statement 

A significant disadvantage of using PCM thermal energy storage is the 

difficulty of charging and discharging the thermal energy storage. Due to the 

low thermal conductivity of the PCM, the melting and solidification processes 

take more time. Recent studied on PCM thermal storage have shown the need 

for heat transfer improvement methods that may significantly reduce the time 

necessary for charging and discharging operations. Over the past three decades, 

significant research has been conducted to increase heat transfer between the 

PCM and heat transfer fluid (HTF). These methods are achieved by increasing 

heat transfer area (via the use of finned tubes, multitube heat exchangers, and 

heat pipes) or by enhancing the thermal conductivity of the PCM (insertion of 

metal matrix into the PCM, utilization of bubble agitation in the PCMs, 

impregnation of porous material and application of PCM dispersed with high 

conductivity particles) [6].  

As previously stated, conventional PCMs' thermal conductivity may be 

increased by using high conductivity materials. Researchers have approached 

the use of high conductivity materials to improve the thermal conductivity of 

traditional PCMs in a variety of methods, which may be described as follows 

[6]: 

 PCM impregnation with porous materials has a high conductivity. 

 Dispersion of particles with high conductivity inside the PCM. 

 Incorporation of metallic structures into the PCM. 

 The use of materials with high conductivity and low density. 

Advanced materials such as low weight, exceptional acoustic and thermal 

properties, high energy absorption capacity, metal foams and so on, have 

garnered considerable attention in recent decades as a porous material with high 

conductivity that can be impregnated with PCM-LHTSs to enhance their 

performance. The metal foam-PCM composite has higher effective heat 

conductivity than pure PCM. When the thermal response of LHTS with foam is  
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compared to that of pure PCM, the composite has higher effective thermal 

conductivity results in more dramatic effects [8]. 

1.5 Objectives of the Present Work 

The main objective of this research is to improve the thermal performance of 

shell and tube LHTS by impregnating the PCM with a high conductivity porous  

material. Since copper has the highest heat conductivity among the metals, the 

copper foam-PCM composite was used in the LHTS during the charging 

process. The thermal performance of LHTS, on the other hand, is measured in 

terms of PCM temperature evolution, charging time, PCM liquid percentage, 

and energy stored at various input temperatures of HTF with constant mass flow 

rates. The current research objectives can be summarized as follows: 

1. To evaluate the thermal performance of shell and tube LHTS utilizing pure 

PCM during the charging process numerically. 

2. To improve shell and tubes thermal performance LHTS during the charging 

process using copper foam-PCM composite.  

3. To investigate the effect of operation parameters/ (inlet temperature of HTF), 

and orientation of LHTS (vertical and horizontal) on the charging time, 

solid-liquid interface.  

4. Fabrication shell and tube LHTS test section to experimentally investigate 

the thermal behavior, phase-transition characteristics of the PCM, and time 

required to achieve melting during the charging process. 

1.6 Thesis Outline 

Basically, this thesis consists of six chapters and list of references. All chapters 

describe the research activates that have been carried out on the PCM-LHTS. 

Each chapter can briefly be summarized as shown below: 

The current chapter shows the background, problem statement, research 

objectives and thesis outline.  
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Chapter Two provides the literature review of PCM and metal foam 

properties and the configurations of LHTS. Heat transfer enhancement 

techniques to improve the thermal response of LHTS are discussed.                                      

Chapter Three presents the numerical modelling and solution procedure 

for LHTS. Two physical configurations of shell and tube model were simulated 

including (1) PCM-LHTS without foam (pure LHTS), and (2) LHTS with 

copper foam-PCM composite (foamed LHTS). Software Ansys Fluent 

(version19) and software Gambit 2.4.6 have been used with the enthalpy 

porosity and the finite-volume methods. 

Chapter Four presents the experimental setup of the LHTS system. The 

primary components descriptions, instrumentations, and experimental 

procedures are presented in details. 

Chapter Five, the numerical results of simulation work are reported in 

this chapter. The phase-transition characteristics and isothermal contours of the 

melting have been presented for both pure LHTS tube and foamed LHTS. The 

experimental results are also discussed in this chapter.  

Chapter Six reports the overall conclusions and significant 

recommendations. Recommendations have included specific ideas for future 

studies to follow up by researchers in the near future.


