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Abstract
This work focused on the synthesis of three different oxidant- to- monomer 

(O/M) molar ratios of PPy like a nanofiber structure (PPy NFs), and composite 

each ratio with (Ag) nanoparticles by the chemical reduction method, it also 

focused on the preparation of (Ag-NiO) nanocomposite by hydrothermal 

method, and composite each PPy NFs molar ratio with thus prepared (Ag-NiO) 

nanocomposite by a volume fraction method. PPy NFs, PPy NFs/ Ag 

nanoparticles, and PPy NFs/ (Ag-NiO) nanocomposite are investigated by X-ray 

diffraction, FESEM, and EDS. It was observed that the increases in the FeCl3

oxidant concentration leads to degradation in the Fe+3- MO template structure of 

PPy NFs. 

From the optical properties studies, it was observed that the optical band gap 

and Photoluminescence behaviour of PPy NFs are changed when increase both 

of oxidant concentration and (Ag nanoparticles and with Ag- NiO 

nanocomposite) additions. The thermal stability of PPy NFs increases when the 

oxidant concentration increases. Surface potential properties of PPy NFs sample 

shows surface polarization behaviour, and also the oxidant concentration 

increases may leads to increase in the work function of the PPy NFs. Silver 

nanoparticles will also seem to enhance the surface potential properties of main 

surface regions of PPy NFs. M- H curves as results show that the PPy NFs and 

PPy NFs/ Ag nanoparticles own soft ferromagnetic properties. The response of 

the H2S gas of PPy NFs, PPy NFs/Ag nanoparticles and PPy NFs/(Ag-NiO) 

nanocomposite samples are studied. It was observed that the H2S gas sensing 

performance enhanced with the increases in oxidant concentration. H2S gas 

response for PPy NFs samples was changed with (Ag) nanoparticles and (Ag/ 

NiO) nanocomposite addition.

 
 



It found also that the largest H2S gas response is equal to 30.57 % at 25 °C 

operating temperature with 48.7 and 10.7 seconds response time, recovery time 

respectively.

The electrical resistance of PPy NFs samples as electrode are changed when 

the oxidant increases, and by (Ag nanoparticles and Ag- NiO nanocomposite) 

capacitances value is observed in PPy NFs sample, and it is equal to 972.3 F/g.

High observed in PPy NFs/(Ag-NiO) 

nanocomposite sample, and it is equal to 512 F/g. Charge- discharge curves of 

PPy NFs, PPy NFs/ Ag nanoparticles, and PPy NFs/ (Ag-NiO) nanocomposite 

shows battery and  supercapacitor like mechanisms.
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1.1 Introduction

Polyacetylene is the first conductive polymer that was discovered by Alan 

Heeger, Hideki Shirakawa, and Alan MacDiarmid in1977. After this discovery, a 

variety of conductive polymers were investigated, including polypyrrole (PPy), 

polythiophene (PT), polyaniline (PANI), poly(3,4-ethylenedioxythiophene) 

(PEDOT), and poly(p-phenylene vinylene)(PPV) [1]. Conducting polymers show 

a promising applications in, sensors, battery, supercapacitors, memories, 

semiconductors, and electromagnetic induction (EMI) shielding [2].

1.2 Conducting Polymers (CPs)

Polymer nanostructures have been synthesized using different techniques, 

such as soft template methods, hard template methods, and electrospinning 

technology. Polymers (CPs) such as polypyrrole, polyaniline and polythiophene 

have a strong electrochemical activity, which makes them valuable for the use of 

supercapacitors and batteries in the electrode region. The advantages of CPs are 

low density, corrosion resistance, flexibility, simple morphology control and 

high conductivity [3- 4]. CPs nanostructures have increased performance in 

various applications compared to bulk CPs due to their excellent properties such 

as nanoscale size. CPs ar - bonds on their 

structure as shown in Figure (1.1), which allows electrons to motivate the whole 

polymer chain, so that they are CPs can act as semiconductors, magnetic 

materials and - electrons delocalization in CPs backbone

causes the electrical and optical properties of CPs [5- 7].
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Figure (1.1) Simplified schematic diagram of a conjugated polymer backbone [7].

1.3 PolyPyrrole (PPy)

Pyrrole monomer represent a heterocyclic aromatic organic compound with 

the formula C4H5N, Pyrrole was first discovered by F. F. Runge in 1834.

Polypyrole (PPy) with formula H(C4H2NH)nH is formed by the 

polymerization of pyrole monomers, first obtained by Agneli in 1916 from a 

solution containing pyrole and hydrogen peroxide, first recognized by Mc Nile 

et al. in 1963, and the first electrochemical preparation of PPy was reported by

Dall Olio et al. in 1968, followed by the preparation of a free-standing solution, 

from this point strong interest in this material led to extensive research into 

chemical, physical and engineering properties of polypyrrole [8-10]. PPy 

represents one of the numerous CPs that has been effective in attracting attention 

due to its specific properties i.e. good environmental and thermal stability, high 

electrical conductivity and simple synthesis pathway, with many possible 

applications in the research field of electronic devices such as sensors, batteries, 

supercapacitors, energy storage and solar cells [11].
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Pyrrole polymerization has been suggested to include many reactions 

including oxidation, deprotonation and crosslinking, for PPy synthesis there are 

two main processes: electrochemical polymerization and chemical 

polymerization; pyrrole polymerization occurs in the presence of an oxidant 

such as FeCl3 or ammonium persulfate; these oxidants are typically used in 

chemical polymerization [12].

1.3.1 Electrochemical Polymerization of PPy

PPy polymerization method happens rapidly, it is difficult to study this 

polymerization method step by step; thus, various methods have been suggested 

to describe the PPy polymerization process [13]. 

Diaz mechanism is the general method of PPy polymerization, after the 

pyrrole monomer has been oxidized in figure (1.2a), the cation radical systems 

in various structures, the electrons where they are not localized only at the 

nitrogen atoms in the pyrrole ring but also at the carbon atoms as shown in 

figure (1.2b), the B2 shape reflects the pyrrole cation radicals which are more 

frequently observed [14]. 

Two B2 type cation radicals were bonded together as shown in figure (1. 2

-position coupling, the deprotonation process removes 

hydrogen atoms then two hydrogen atoms bound at carbon 

atoms as shown in figure (1. 2 d), and so on in figure (1.2 f) and (1.2 e) [15].
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Figure 1.2 Diaz polymerization mechanism of polypyrrole [15].

1.3.2 Chemical Polymerization of PPy

Polypyrrole can be prepared by oxidation of the monomer with chemical 

oxidants, aqueous FeCl3 is used as chemical oxidants as shown in figure (1. 3) 

[16]. 

The conductivity of the PPy depends on a variety of factors, such as: choice 

of oxidant and solvent, initial monomer-to-oxidant ratio, reaction temperature, 

etc. which provided the possibility of producing PPy film with high mechanical 

properties on substrates of any form. Chemical polymerization is a quick and 

fast process without the need for special equipment and gives a large quantity of 

powder, so the chemical synthesis seems better for industrial applications [17]. 
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Figure (1. 3) chemical polymerization mechanism of polypyrrole [16].

1.4 Doping

The CPs have been doped using various techniques. Un-doped CPs have been 

identified as insulators but their electrical conductivity changes from insulating 

to conductor during the doping process. Doping for CPs is entirely different 

about what occurs in inorganic materials [18]. 

The reason for the doping is to remove add electrons to the backbone of the 

CPs. The oxidation and reduction process produces polarons or bipolars or 

solitons in the CPs system, which are charge carriers, and the movement of these 

carriers produces electrical conductivity in the CPs chains. In the p-type doping 

process, the electron was moved from the highest occupied molecular orbital 

(HOMO) of the CPs to the doping level, forming a hole in the CPs backbone. 

But the electrons were transferred from the doping level to the lower unoccupied 

molecular orbital (LUMO) of the n-type doping CPs, which resulted in an 

increased electron density [19- 21]. 
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1.5 Template directed growth of conducting polymer 
nanostructures

Direct growth template producing of CPs includes soft template methods and 

hard template methods, the first based on the self-assembly of CPs molecules to

form various shape nanostructures, while the second methods describe the

replicates nanostructure by the chemical interactions [22].

Soft template synthesis, often known as the self-assembly process involves 

microemulsion polymerization and reverse microemulsion polymerization, 

microemulsion polymerization generates nanoparticle CPs, these methods can 

be improved for nanocapsule synthesizing and nanocomposite CPs shape 

structures. Figure (1. 4) shows fabricated PPy nanospheres by microemulsion 

polymerization [23, 24].

Figure (1. 4) Schematic of the microemulsion fabrication of PPy hollow nanospheres [24].

Reversed-micro emulsion polymerization produces CPs in nanotubes 

structure by interaction between ions and surfactants, a soft template 

process having many advantages such as low cost, and useful for the 

manufacture of large quantities of CPs. Figure (1. 5) show fabricated PPy 

nanotube by reverse microemulsion polymerization [25, 26].
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Figure (1.5) Schematic diagram of polypyrrole nanotube fabricated by using reverse 
microemulsion  polymerization [26].

The hard template was used as a scaffold for the growth of CPs. Using 

nanoparticles as a template, CPs are polymerized on the outer surface of 

this template, which may result in a core shell structure, and then after 

removing the template, hollow nanostructures such as nanotubes are 

obtained. [27]. Soft templates process such as azo-dyes template (representing 

organic compounds ) are introduced to make 

fibrillar or tubular morphology CPs, which have recently attracted hydrosoluble 

methyl orange (MO) interest in the preparation of PPy nanofibers or nanotubes

[28].

1.6 Hybrid Conducting Polymers (HCPs)

Hybrid CPs are heterogeneous or homogeneous nanocomposite 

structures, including miscible CPs with organic or inorganic components in 

which these components are to be measured in nanometers (nm); bonds in 

HCPs can be divided into two types, weak interactions such as (Van der 

Waal or hydrogen bonding) and strong interactions such as covalent 

bonding between the two phases. Successful incorporation of organic or 

inorganic doping in CP matrices can increase the electron transfer rate 

[29,30].



Chapter One                                                                              Introduction 

8 

The nano hybrid CPs owning excellent physical properties with various

application elds such as sensors, battery, and microelectronics [31].

1.6.1 Synthesis methods of hybrid conducting polymers

HCPs can synthesized by the following techniques:

1.6.1.1 Chemical polymerization of HCPs

This technique is used to synthesize HCPs due to fast processing, low 

cost and various routes. It is divided into two types: polymerization of 

condensation (polymerization of phase growth) and polymerization of 

addition (polymerization of chain growth). Sol–gel is a promising 

technique for the synthesis of HCPs. The formation of HCP occurs through 

condensation reactions and hydrolysis reactions between CPs and organic 

or inorganic compounds. The main characteristic for the synthesis of HCPs 

by the sol-gel method is that CPs and inorganic or organic compounds can 

be connected together by chemical bonding mechanisms, the diagram of 

sol–gel method is given in figure (1. 6) [32, 33].

Figure (1. 6) Scheme of sol–gel synthesis method [33].
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One of the oxidative methods of polymerization is emulsion 

polymerization was used for the preparation of HCPs in two types: oil in 

water and water in oil emulsion. Monomer and surfactant are applied to the 

solvent when the initiator is added; this causes the formation of micelles 

and monomer polymerizations associated with these micelles affect the 

formation in the reaction solution of colloidal dispersions, the emulsion 

polymerization is shown in figure (1. 7) [34, 35].

Figure (1. 7) Basic mechanisms of the emulsion polymerization [35]. 

1.6.1.2 Electrochemical polymerization of HCPs

This technique was used for the preparation of HCPs using three electrodes 

(reference, working and counter electrodes). Gold, nickel, titanium and platinum 

are the electrodes used as anodes. Solvents and electrolytes which provide the 

conductive medium for electrochemical polymerization and dependence on their 

stability at oxidation potential [36]. 

1.6.2 Properties of Hybrid Condcting Polymers (HCPs)

The properties of the hybrid conducting polymers depend on the structure, 

morphological, arrangement of the filler within the CPs matrix and aspect ratio.
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The addition of organic or inorganic second filler to the CPs matrix also can 

increase the physical properties of HCPs. The improvement in conductivity may 

be due to the uniform dispersion of the filler in the CP matrix. Similarly, the 

addition of the filler to the HCP matrix increases the thermal properties of the 

HCPs. Increased mechanical properties of HCPs can be due to additive effects. 

In addition, the integration of the filler can affect the morphology and structure 

of the HCPs [37, 38].

1.6.3 Applications of hybrid conducting polymers

In a variety of applications, HCPs can be promising materials including 

organic electronics, sensors (chemical or biological), energy storage, EMI 

shielding and biomedicine [39]

1.6.3.1 HCPs in Sensors

HCPs show both the properties of CPs and inorganic materials to be 

promising material in various applications such as gas and chemical sensors 

[40]. These properties should be taken into account when choosing gas sensor 

materials: (1) selectivity, (2) durability, and (3) cyclicability. Selectivity 

determines whether the sensor is responsible for an analysis group or for a single 

analysis, stability determines if the sensor can be reproducible over a certain 

period of time; and the cyclicability determines if the time period of the sensor 

will operate continuously. The surface area of the HCPs can enhance 

interactions between the material of the sensor and the analytic, resulting in an 

increase in analytic sensitivity. The gas sensing properties of HCPs may have 

been enhanced for the following reasons: (1) the electron mobility of the filler, 

which helps to increase the charge transport of HCPs and thus enhances the 

response of the gas sensing system, (2) the large surface area of HCPs helps the 

adsorption of gas molecules [41, 42]. 
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1.6.3.2 HCPs as energy storage

The electrostatic interaction between the ions in the electrolyte and the charge 

on the surface of the electrode substrate has been stored in electrochemical 

capacitors, therefore redox reactions can occur in the electrode material[43].

Recently, a great deal of attention has been dedicated to the use of CPs in 

electrochemical capacitor applications and stored electrochemical batteries[44]. 

CPs such as PPy have been usually used as active electrode material in energy 

storage applications, but have poor stability; therefore this problem can be 

overcome by manufacturing HCPs. [44, 45].

1.7 Silver NanoParticles

Silver may be engineered into nanoparticles form, the silver nanoparticle was 

ranged from 1 to 100 nm in size. Owing maximum surface area; this leading to 

the highest values of the weight ratio. Silver nanoparticles were obtained by 

various synthesis such as electron irradiation, photochemical methods, laser 

ablation , and chemical methods including chemical reduction method for CPs 

reducing agents and electrochemical techniques [46]. 

Several reducing agents play a role in the formation of metal salts into metal 

nanoparticles. Most of these reducing agents need temperature during chemical 

reduction but some reducing agents will reduce to nanoparticles at room 

temperature [47]. 

1.8 Silver doped Nickel Oxide Nanocomposite

Nickel oxide (NiO) is an important semiconductive metal oxide used as 

electrodes, sensors and electronic devices. Nickel oxide is used as a 

reinforcement material during the preparation of CPs due to their unique 

properties, often the discovery of Ni+ and Ni++ ions in nickel oxide can enhance 

the motivation of the charge carrier through the CPs. [48]. 
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Noble metals represent a great deal for improves properties of NiO. Silver is

one of the noble metals with the lowest price and good properties has been used

usually in NiO doping, silver- nickel oxide nanoconposite materials have shown 

excellent electrical conductivity performances for sensor and other devices, so 

that the incorporation of Silver- Nickel Oxide nanoconposite in polypyrrole

matrix was enhanced the doping process; this leads to the best physical 

properties [49].

1.9 Thin film Preparation

Thin film technology plays an important role in the industry, and is generally 

used for the preparation of integrated circuits. However in the industry request 

to the production of smaller integrated circuits with advanced materials at 

higher speeds, while new processing techniques have emerged [50]. Thin film 

techniques during the 20th century have required for a wide range of 

technological advances in many fields such as: magnetic recording, 

semiconductor devices, LEDs, cutting equipment, and (solar cells) storage (fine-

film batteries or supercapacitors).Figure (1. 8) represents the generally thin film 

deposition methods techniques [51].

Figure (1. 8) classification of thin film deposition methods [51].
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For deposit uniform thin film onto sample substrate, amount of coat material 

was added to non-spinning substrate, after that the substrate rotated up to 1000 

rpm to distribute the material by centrifugal force [52]. The thickness of the 

film depends on various factors such as concentration of the solvent and its 

viscosity [53]. The surface tension and the viscous force represents the key 

causes of the deposition material on the substrate, the spin coating technique 

involves several steps such as spin on , fluid distribute, evaporation, spin off,

respectively as shown in figure (1. 9) [54]. 

Figure (1.9) schematic diagram of spin-coating method.

Spin coating method has several advantages: it is a simple technique that can 

be prepared at room temperature, and low cost to manufacturing thin films, spin 

coating method is the best technique to produce thin films with uniform 

e small substrate surface [55].
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1.10 Literature review

Yang et al. in 2005 offer a process that is estimated the pyrrole (Py) 

polymerization on the surface of methyl orange- iron(III) chloride (MO–FeCl3)

complex template. (1.5 mM) of FeCl3 and (0.15 mM) of MO were dissolved in 

30 ml of deionized water solution. Then (1.5 mM) of Py was added to the above 

(FeCl3- MO) solution and stirred at room temperature for 24 hours. PPy 

precipitate washed several times with deionized water and ethanol and finally 

dried under a vacuum at 60 °C for 24 hours.The PPy tubular structure was 

confirmed by the TEM micrograph, where the hollow nanotube diameters are 

approximately 50 and 70 nm, respectively. Complexation between organic 

compounds such as dye and Fe +3 is found to be very effective. FeCl3 act as a 

flocculant, in chemistry. MO in water-soluble has anionic properties in 

an aqueous solution, and having a planar hydrophobic part and hydrophilic edge 

(-SO-3). FeCl3 can remove electrostatic repulsions between MO aggregations 

that react in solutions with negatively charged of MO aggregates, and form an 

amorphous complex [56].

Gonçalves et al. in 2006 reported the relationship between FeCl3 oxidant - to-

pyrrole monomer molar ratio and study the electrical conductivity of polypyrrole 

according to these different oxidant concentration (increasing oxidant- to-

monomer molar ratio from 1.4:1 to 2.8:1). PPy formed by chemical 

polymerization of  Py by using FeCl3 as an oxidant. Py kept at 6 ºC before use, 

the reaction solution was stirred for 2 hours, then filtered, washed and dried at 

50 C for 12 hours. PPy used as a cathode layer and the electrical conductivity 

for a molar ratio of 2:1 equal 7.5 S/cm due to the limited amount of oxidant used 

which could not oxidize all the existing monomers [57].
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Johnston et al. in 2006 show that PPy coated fibers can be obtained by method 

of Py dispersion polymerization (cellulose fibers, monomers, and additives are 

dispersed into water) then FeCl3 is added to the oxidizing solution. A fully 

distributed suspension of individual cellulose fibers is available in dry pulp in 

500 mL of water. It was filtered and the fibers were re-distributed by stirring 

(0.5 M) pyrrole and (0.05 M) of sodium benzene-sulphonate dodecyl in 500 mL 

water solution for 1 h to allow pyrrole to penetrates the surface cellulose fibers. 

After that the fibers were filtered and washed with a pyrrol solution, (0.5 M) of 

FeCl3 which was added as a polymerization oxidant. The suspension was then 

left for 3 hours to make sure it was polymerized. The resulting PPy- coated

cellulose fiber was filtered and washed thorough the sieve with distilled water to 

remove any free PPy. The coated fibers were then re-dispersed in ethanol and

washed with water. The electrical conductivity of these composites was greatly 

enhanced over those of the precursor fibres [58].

De Melo et al. in 2007 were showed that polypyrrole (PPy) can be used as a 

sensor for certain components in gas, such as inorganic (NH3) and organic 

molecules (acetone, methanol, and ethanol). Primarily, 4% of the solution of 

PMMA+, PTSA, PCP, PEO, and PVAC was dissolved in a (0.05M) solution of 

ferric chloride into an exact solvent such as tetrahydrofuran (THF), chloroform, 

water, and methanol, respectively. Subsequently, a limit quantity of these

polymer solutions with ferric chloride was deposited on ITO substrate. These

polymeric film was exposed to a vapor Py for (30 min) resulting in the 

polymerization of the Py monomer occurs, and PPy structure has been blended

with the above conventional polymer chains, the polymerization of the PPy

chains occurs not only on the outer surface of the film, but also around all FeCl3

grains distributed in the above conventional polymer matrix [59].
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Yun et al. in 2007 synthesis of polypyrrole nanotubes (PPy NTs) using the 

(FeCl3- MO) fibrillary complex as a template. The complex template could 

begin pyrrole monomer polymerization and PPy growth as nanotubes, and the 

(FeCl3-MO) template was self-degraded after (Py- MO- FeCl3) reaction, leaving 

PPy NTs at high yield [60].

Hernandez et al. in 2007 used PPy a single nanowire coated on gold electrodes 

and deposited on a microfabricated SiO2/Si substrate to use this method for the 

detection of NH3 gas. It was also used for the gas response to NO2, but did not 

demonstrate any gas sensitivity to this analyte [61].

Shubhra et al. in 2009 used PPy Nanofibers with (HCl, p-TSA, FeCl3, CSA, 

and PSSA) dopants to synthesize PPy nanofibers, this oxidative polymerization 

method is used to produce PPy nanofibers. For the purpose of the doping 

process, 2M are dissolved in 20 ml of water each dopants. 3.2 mM APS was 

used as an oxidizer to the solution of each compound. (12.8mM, 0.87ml) pyrrole 

monomer dissolved in 40 ml of chloroform. The pyrrole solution then added 

drop-wise. At room temperature, the reaction mixture remained unchanged. The 

polymerization reaction was stirred for 15 minutes for each set. Then, the 

precipitate was filtered and washed with acetone and distilled water to extract 

impurities. At room temperature the black powder was finally vacuously dried 

for 24 hours. As result the electrical conductivity polypyrrole nanofiber depends 

on the doping (p-TSA > CSA > HCl > FeCl3 > PSSA) [62].

Marchesi et al. in 2010 investigated small contents of iron in PPy matrix, the 

iron was incorporated in PPy matrix which origin from adding of FeCl3 to the 

reaction solution during the chemical pyrrole monomers polymerization. 

Relationship between PPy pellets with the addition of FeCl3 lead to increase the

saturation magnetization (Ms) of PPy and the ferromagnetic state of PPy was 

observed when iron element is present in this material.
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This increase in the magnetic saturation due to the presence of iron species in

PPy matrix can be related to locally polarized polarons generating an increase in 

the effective saturation magnetization as suggested by das sarma for magnetic 

semiconductor theory explained [63].

Xiaoming et al. in 2010 synthesized PPyNFs with a simple process of reactive 

template. The reactive FeCl3 template with MO provided stable PPy NFs. The 

ammonia gas sensor was based on polypyrrole shows a higher sensing 

performance than the ammonia gas sensor was based on polypyrrole nanofiber

[64].

Kwon et al. in 2010 synthesized PPy nanoparticles with nanodiameter sizes (20 

and 60 nm) by pyrrole chemical oxidation polymerization. Polyvinyl alcohol 

(PVA) was dissolved in water and reacted with metal cations of FeCl3 in water

and formed complex compounds. PPy nanoparticles (PPy NPs) of different 

diameters could be acquired under the following experimental conditions, PVA 

aqueous solutions have been added to FeCl3 and FeCl3 has a molar ratio of 2.3 to 

pyrrole. When monomer is already in contact to the oxidizing agent immediately 

polymerizing continues. Within few minutes the solution was black and mixed 

for a minimum of 2 hours. PPy NPs were later washed with distilled water 

several times to remove impurities and dried under vacuum for 24 hours at room 

temperature. The smallest (20 nm) PPyNPs was used as sensor to provide the 

full sensitivity of NH3 [65].

Nurul et al. in 2011 prepared (NiO–PPy) composite electrodes for Li-ion

batteries by the chemical polymerization of pyrrole with sodium p-

toluenesulfonate and Triton-X as doping and surfactant, respectively. 

Cauliflower-like PPy particles formed with a uniform NiO coating. The 

electrochemical results for the NiO–PPy composite have been improved 
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compared to the pure NiO. After 30 cycles, the capacities for pure NiO is about 

119 mA.h/g and for NiO–PPy composite about 436 mA.h/g [66].

Yuan et al. in 2011 studied The relationship between the oxidant-to-monomer 

molar ratio of FeCl3 and the electrical conductivity of PPy by increasing the 

oxidant-to-monomer molar ratio from 0.25:1 to 2.5:1. The reaction solution was 

stirred for 1 hour, then filtered, washed and dried at 75 C. The results showed 

that the conductivity of PPy was dependent on the oxidant-to-monomer molar 

ratio and that the maximum value for electrical conductivity of PPy was equal to

15 S/cm at 0.75:1 mole ratio [ 67].

Ramesan et al. in 2012 synthesized PPy composite by chemical oxidative 

polymers with CuS NPs of the copper sulfides. A thioacetamide- CTAB 

solution was added with a continuous stirring to the copper acetate solution for 

20 minutes at 30 . After 12 hours, the brown solution became green (50 to 300 

nm) of the copper sulfide nanoparticular has been obtain. (0.03M) pyrrole in 50

ml of distilled water with copper sulfide nanoparticular solutions have been 

ultrasonicated for over 35 min. (0.06M) APS added to sulphide particle

dispersion in solution and stirred at 10°C, when changing to a black color, this

indicating to reaction had polymerization immediately. The polymerization was 

carried out with continuous mechanical stirring for 9 hours at room temperature

PPy/CuS nanocomposite precipitate was filtered and washed with methanol and 

distilled water on various times. At 60 C for 24 hours, the processed powder 

was dried. PPy has improved its electrical conductivity by increasing the 

number of CuS NPs in the PPy matrix and this may be due to the interactions 

between CuS and the polymer component [68].

Jitka et al. in 2013 prepared PPy NTs by polymerization of Py with FeCl3 (1:1) 

molar ratio in the presence of MO molecules. Then PPy NTs is used to reduce 

Ag NPs from the AgNO3 aqueous solution. The results indicated to nanotube 
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shape of PPy. The presence of silver nanoparticles has had an effect on electrical 

conductivity [69].

Joulazadeh et al. in 2015 prepared PPy NTs using a complex methyl orange 

(MO) and iron (III) chloride (FeCl3) template. The effect on the final PPy NTs

morphology of molar reactants ratios (Py:MO:FeCl3). The results showed that 

the high pyrrole monomer amounts could degrade the template and form a 

hollow tubular shape, while the presence of a low pyrrole amount could lead to 

non-hollow fibrillar morphology. It is expected that the relative molar relation 

of MO: FeCl3 will be relevant for formulating nanostructures based on 

templates [70].

Xiang et al. in 2015 used PPy– nanocomposite graphene decorated as sensitive 

surface for NH3 by TiO2 NPs added. Pyrrole, CTAB and citric acid (0.1 M) 

were dissolved in deionized water and then stirred for 3 hours. (0.5 M) APS 

dissolved in 20 ml of deionized water, then added for 0.5 h into the prepared 

solution and stirred for 4 hours, then the solution was filtered and washed with 

methanol and deionized water and dried at 60 °C, this lead to obtaining PPy-

graphene nanocomposite. TiO2 nanoparticles were decorated using the Sol–gel 

method with PPy–graphene nanocomposite. The solution was dried for 10 hours 

at 70°C. 0.1 g of PPy- graphene nanocomposite/ TiO2 powder dissolved in 5 ml

of (DMF) solution with ultrasonicated for 0.5 h, the solution syringed on the 

space between the two copper foils strip and dried. The response of PPy-

graphene nanocomposite/ TiO2 NPs for 50 ppm ammonia was 102.2 per cent at 

room temperature [71].

Joulazadeh et al. in 2015 used PPy NFs for the detection of propanol,

methanol, butanol, and ethanol. PPy NFs sensor showed higher response to 

propanol and butanol this is may be due to the longer alkyl chain compared with

ethanol and methanol [72].
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Jamalabadi et al. in 2018 successfully prepared and deposited PPy- (NiO,

SnO2-NiO, ZnO-NiO, and WO3,) hybrid nanocomposite thin films by 

electrospinning technique. The sensing performance have been studied when

these thin films were exposed to methyl-, ethyl-, dimethyl-,and propylamine, 

acetone, ethanol, and water vapors. The results showed the ability for 

quantification of different amine vapors at low temperature in humid atmosphere

[73].

Ramesan et al. in 2018 prepared PPy/ (Ag-NiO) nanocomposites by 

polymerization of Py with different contents of Ag/ NiO nanocomposites. PPy/ 

Ag-NiO nanocomposites showed an improvement for high sensitivity detection 

towards ammonia gas than pure PPy [49].

Mahdi et al. in 2018 presented the composite thin films of polypyrrole (PPy) 

with functionalized single wall carbon nanotube (fSWCNT) for hydrogen 

sulfide (H2S) gas sensing application. The response of these composite films for 

H2S gas was evaluated by monitoring the change  in electrical resistance at (20,

50, 100, 150 and 200) C. It was observed that the PPy/ fSWCNT nanocomposite 

films show a higher sensitivity as compared to pure PPy [74].

1.11 Aim of the work

Syntheses of polypyrrole nanofibers with different oxidant/ monomer ratio by 

using soft template method and using PPy NFs to reduction of  Ag nanoparticles

from silver nitrate aqueous solution.

Syntheses of ( Ag- NiO) nanocomposites by using hydrothermal method and 

preparation of PPy NFs with (Ag- NiO nanocomposites) by using volume 

fraction method.

Study the effect of oxidant and additions on the structural, optical, electrical, 

magnetic and electrochemical behaviour of PPy NFs. And using PPy NFs with 

addition in some application such as gas sensing and like energy storage device. 


