

Republic of Iraq, Ministry of higher Education and Scientific research, University of Diyala, College of science, Department of physics

Synthesis and Characterization of (Polypyrrole-Ferrites) Nanocomposites for Multi-Applications

A Thesis

Submitted to the Council of the College of Science, University of Diyala in a Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy of science in Physics

By

Omar Ahmad Hussein Al-Jubouri

B. Sc. in Physics (2006)M. Sc. in Physics (2012)

Supervised By

Prof. Dr.

Tahseen Hussein Mubarak

University of Diyala

2022 A.D.

Prof. Dr. Isam Mohammed Ibrahim

University of Baghdad

1444 A.H.

مِ ٱللَّهِ ٱلْتَحْمَرَ ٱلرِّحْبَمِ بْسَه

(قُلْ إِنَّ صَلَاتِي وَنُسْكِي وَمَحْيَايَ وَمَمَاتِي لِلَّهِ رَبِّ الْعَالَمِينَ (162) لَا شَرَيِكَ لَهُ صُوَبِذَٰلِكَ أُمِرْتُ وَأَنَا أَوَّلُ الْمُسْلِمِينَ (163))

صدق الله العظيم

سورة الأنعام (162-162)

Dedication

Words are not enough to describe people who stand by me in better or worse, so I dedicate my Ph. D. to ...

My merciful parents

My supporters brothers and sister

My wonderful wife

My awesome children Mohammed and Misk.

<u>Omar</u>

Acknowledgment

First of all, I would like to thank Almighty **Allah** for giving me the strength, knowledge, ability and opportunity to carry out this work.

It is high necessary to express my deep gratitude for people who support and encourage me during my study.

I would like to express my heartfelt thanks to my supervisors, **Prof. Dr. Tahseen H. Mubarak** and **Prof. Dr. Isam M. Ibrahim**, for their guidance, inspiration and encouragement.

I express my thanks to all members of Physics Department, especially postgraduate faculty members and staff of the college for their cooperation. I would also like to thank the staff of the thin-film laboratory in the Physics Dept. College of science, University of Baghdad for allowing me to finish my work.

I offer my special thanks to my research colleagues and friends, for their cooperation during the period of studies and thesis work.

My sincere thanks to my close friends (Mr. Omar Yusuf, Dr. Rasheed Salih, Dr. Omar Al-Fahdawe, Dr. Hussein Sliman, Dr. Laith Ali & Dr. Mohammed Ihsan) for their help and support.

Finally, I shall always be grateful to my father, mother, brothers (Salih, Falih, Jassim, and Othman), sister (Wafaa), and wife for their love (Noor), valuable advice, and support through the years of my study.

Supervisors Certification

We certify that this thesis entitled "Synthesis and characterization of (Polypyrrole-ferrites) Nanocomposites for Multi-applications" for the student (Omar Ahmad Hussein), was prepared under our supervisions at the Department of Physics, College of Science, University of Diyala in partial fulfillment of requirements needed to award the degree of Doctor of Philosophy (Ph.D.) of Science in Physics.

<u>Signature:</u>	Signature:
Name: Dr. Tahseen H. Mubarak	Name: Dr. Isam M. Ibrahim
Title: Professor	Title: Professor
Address: College of Science,	Address: College of science,
University of Diyala	University of Baghdad
Date: / / 2022	Date: / / 2022

Head of the Physics Department

In view of available recommendation, I forward this thesis for debate by the examining committee.

Signature:

Name: Dr. Ammar Ayesh Habeeb
Title: Assistant Professor
Head of the Physics Department
Address: College of Science, University of Diyala
Date: / / 2022

Scientific Amendment

I certify that the thesis entitled "Synthesis and characterization of (*Polypyrrole-ferrites*) Nanocomposites for Multi-applications" presented by student (Omar Ahmad Hussein) has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature

Name: Dr. Balqees M. Dheyaa

Title: Professor

Address: University of Technology, Applied science department

Data: / / 2022

Scientific Amendment

I certify that the thesis entitled "Synthesis and characterization of (*Polypyrrole-ferrites*) Nanocomposites for Multi-applications" presented by student (Omar Ahmad Hussein) has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature

Name: Dr. Lamia Khudhair Abbas

Title: Assistant Professor

Address: University of Baghdad, College of science, department of Physics

Data: / / 2022

Linguistic Amendment

I certify that the thesis entitled "Synthesis and characterization of (*Polypyrrole-ferrites*) Nanocomposites for Multi-applications" presented by (**Omar Ahmad Hussein**) has been corrected linguistically; therefore, it is suitable for debate by examining committee.

Signature

Name: Karim H. Hassan

Title: Professor

Address: University of Diyala, College of science, department of chemistry

Data: / / 2022

Examination Committee Certificate

We certify that we have read this thesis entitled "Synthesis and characterization of (Polypyrrole-ferrites) Nanocomposites for Multiapplications" and, as an examining committee, we examined the student (Omar Ahmad Hussein) on its content, and in what is related to it, and that in our opinion it meets the standard of a thesis for the degree of Doctor of Philosophy of Science in Physics.

(Chairman)

Signature Name: **Dr. Sabah A. Salman** Title: Professor Address: College of Science, University of Diyala Date: / / 2022

(Member)

Signature Name: **Dr. Nadheer Jassim Mohammed** Title: Professor Address: College of Science, Al-Mustansiriyah University Date: / / 2022

(Member)

Signature Name: **Dr. Olfat A. Mahmood** Title: Assistant Professor Address: College of Science, University of Diyala Date: / / 2022

(Member / supervisor)

Signature Name: **Dr. Tahseen H. Mubarak** Title: professor Address: Date: / / 2022

(Member)

Signature

Name: **Dr. Estabraq Talib Abdullah** Title: Assistant Professor Address: College of Science, University of Baghdad Date: / / 2022

(Member)

Signature Name: **Dr. Muhammad Hameed Abdul-allah** Title: Assistant Professor Address: College of Science, University of Diyala Date: / / 2022

(Member / supervisor) Signature Name: Dr. Isam M. Ibrahim Title: professor Address: Date: / / 2022

Approved by the Council of the College of Science(The dean)Name: Dr. Tahseen H. Mubarak

Date: / / 2022 Title: professor

<u>Abstract</u>

This research concentrates on the preparation of polypyrrole nanofibers (PPy-NFs) polymer using chemical polymerization technique and the nanoparticles of $(Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4)$ by co-precipitation technique followed by thermal treatment in a hydrothermal autoclave reactor where the values of (x) were within range (0-0.8) with (0.2) increment in each sample. Then the polypyrrole nanofibers were decorated with different ferrite nanoparticles to obtain (PPy-NFs/Ferrite nanoparticles) nanocomposite.

The prepared materials were characterized via several techniques, including X-ray Diffraction (XRD), infrared spectroscopy (FTIR) and Field emission Scanning electron microscopy (FESEM). (XRD) results demonstrated the amorphous character of polypyrrole and the single phase cubic spinel for the ferrite nanoparticles. The Crystallite size (D₃₁₁) of the ferrite particles was within the range (8.54-14.47) nm. Also, (FESEM) images revealed that polypyrrole has polymerized in form of a 1D nanofibers net. Also, ferrite nanoparticles are spherical with little change in particle size distribution. (FTIR) of ferrite nanoparticles revealed two distinct absorption bands belonging to the tetrahedral places and octahedral places, respectively. In addition to it exhibited fabulous coherence between polypyrrole (PPy-NFs) and Ferrite nanoparticles. This indicates for the infallible fabrication of nanocomposites. The optical characteristics of the samples had also examined, and it has been noted that the value of the energy gap and absorbance behavior change with the change in the addition ratios and ferrite content.

The magnetic measurements were made at room temperature showed that the prepared samples have definite magnetic properties. It was also observed that the values of the saturation magnetization altered through the cobalt content change in the composition. It recorded highest value at (x=0) for $(Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4)$, then it gradually decreases with the decrease in the cobalt content.

The prepared nanocomposite had been used to enhance the photodetector sensitivity. The highest photosensitivity for each of polypyrrole (PPy-NFs) was up to (43.42%) and ferrite nanoparticles was (81.47%) at (x=0.8). While Nanocomposite sample for (PPy-NFs/Zn_{0.8}Mn_{0.2}Fe₂O₄) was (103.74%) for light with power of (30 mW) and wavelength of (405 nm). The rise and fall time were about (0.5 sec).

The supercapacitors were prepared for polypyrrole, ferrite nanoparticles and nanocomposite samples in order to gain distinguish and periodically stable capacitances. The performance of samples had evaluated via CV, EIS as well GCD methods. The highest capacitance of the nanocomposite electrode for (PPy-NFs/Zn_{0.8}Mn_{0.2}Fe₂O₄) was equal (414.12 F/g) with scan rate (20mV/s).

Finally, the response of the prepared samples was studied for ammonia gas sensing. It was found that ammonia gas sensing increase gradually with the raise of the zinc content in the pure ferrite nanoparticles samples and the PPy-NFs nanocomposite samples. It was noted that the largest response of ammonia gas at a temperature of $(50^{\circ}C)$ for ferrite nanoparticles at (x=0.8) equals (679.01%) and the nanocomposite samples for (PPy-NFs/Zn_{0.8}Mn_{0.2}Fe₂O₄) was equal to (423.11%).

Published and Accepted Research Articles

List of Publications

- 1- Omar A. Hussein, T. H. Mubarak, Isam M. Ibrahim, Enhancement the photosensitivity of PPy-NFs/Nanoferrite for Photodetector, International Journal of Mechanical Engineering, ISSN: 0974-5823, Volume 7, No.3, PP. 274-284, 2022.
- 2- Omar A. Hussein, T. H. Mubarak, Isam M. Ibrahim, Magnetic properties of Hybrid inorganic-organic flexible nanofibers, NeuroQuantology, Volume 20, issue 4, PP. 64-72, 2022.
- 3- Omar A. Hussein, T. H. Mubarak, Isam M. Ibrahim, Designing inorganic-organic nanofibers nanocomposite for Supercapacitor Applications, NeuroQuantology, Volume 20, issue 5, PP. 1972-1983, 2022.

Contents

Subject	Page No.
Table of Contents	Ι
List of Figures	VI
List of Tables	Х
List of Symbols	XI
List of Abbreviations	XIII

Table of Contents

Item No.	Subject	P. No.
Cl	hapter One: Introduction and Literature Review	1
1.1	Introduction	1
1.2	Literature Review	3
1.3	Aims of the study	11
(Chapter Two: Theoretical and Basic Concepts	12
2.1	Introduction	12
2.2	Nanoscience and Nanotechnology Background	12
2.3	Nanomaterials Classification	13
2.4	Conducting Polymers (CPs)	14
2.5	Classification of Conducting Polymers	15
2.5.1	Intrinsically Conducting Polymers	15
2.5.1.1	Conjugated Conducting Polymers	15
2.5.1.2	Doped Conducting Polymers	15
2.5.2	Extrinsically Conducting Polymers	16
2.5.2.1	Conductive Element Filled Polymers	16

2.5.2.2	Blended Conducting Polymers	16
2.6	Synthesis of conducting polymers	16
2.6.1	Chemical Polymerization	17
2.6.2	Electrochemical Polymerization	17
2.7	Principles of Electrical Conduction	18
2.7.1	Band Theory	18
2.7.2	Conduction by reinforcement	19
2.7.3	Polaron and Bipolaron Model	20
2.8	Conductive polymers activation	22
2.9	Applications of conducting polymers	22
2.10	Polypyrrole polymer (PPy)	23
2.11	Composites	25
2.12	Nanoparticle/Polymer Composite techniques	26
2.12.1	Solution Mixing	27
2.12.2	Melt blending	27
2.12.3	In-Situ Polymerization	27
2.13	Magneto Polymeric Materials	28
2.14	Magnetic nanoparticles	29
2.15	Origin of Magnetism	30
2.16	Types of magnetic materials	32
2.17	Ferrites	37
2.17.1	Soft ferrite	37
2.17.2	Hard ferrite	37
2.18	Crystal structure of ferrites	38
2.18.1	Spinel Ferrites	38
2.18.1.1	Normal spinel ferrites	39

2.18.1.2	Mixed Spinel Ferrites	39
2.18.1.3	Inverse Spinel Ferrites	40
2.18.2	Garnet Ferrites	41
2.18.3	Hexagonal ferrite	41
2.19	Superparamagnetism	41
2.20	Magnetic domains	44
2.21	Properties of Magnetic Materials	47
2.21.1	Magnetic Hysteresis	47
2.21.2	Saturation Magnetisation	48
2.21.3	Remanence (Retentivity)	49
2.21.4	Coercivity	49
2.21.5	Magnetic Anisotropy	49
2.22	Synthesis of Ferrite Nanoparticles	51
2.22.1	Co-precipitation technique	51
2.22.2	Hydrothermal or solvothermal method	52
2.23	Autoclave Requirements	53
2.24	Conventional capacitors and supercapacitors	53
2.25	Types of supercapacitors	55
2.25.1	Electrochemical Double Layer Supercapacitors	55
2.25.2	Pseudocapacitors	57
2.25.3	Hybrid supercapacitors	57
2.26	Supercapacitors applications	59
2.27	Electrochemical Characterization Techniques for ECs	60
	Applications	
2.27.1	Cyclic Voltammetry (CV)	60
2.27.2	Galvanostatic Charge-Discharge (GCD)	63

2.27.3	Electrochemical impedance spectroscopy	64
2.28	Photoconductivity	66
2.28.1	Current-time characteristics	67
2.28.2	Rise time and fall time upon a square-pulse signal	68
2.28.3	Sensitivity	69
2.29	The Term "Sensor"	69
2.29.1	Conducting polymer sensors	70
2.30	Characteristics used to study PPy, Ferrite and PPy	72
2 20 1	N De Differentier (VDD)	70
2.30.1	X-Ray Diffraction (XRD)	72
2.30.2	Field emission-scanning electron microscopes	75
	(FESEM)	
2.30.3	Fourier Transform Infrared (FTIR) spectroscopy	76
2.31	Optical properties	77
2.31.1	Optical Properties of conducting Polymers	78
2.31.1.1	Optical Absorption: Formation of Excited States	78
2.31.1.2	Optical Emission: Relaxation of Excited States	78
	Chapter Three: Experimental Part	80
3.1	Introduction	80
3.2	Materials and method	82
3.2.1	Materials and chemicals	82
3.2.2	Synthesis of Polypyrrole Nanofibers (PPy-NFs)	83
3.2.3	Synthesis of Ferrite Nanoparticles	84
3.2.4	Synthesis of Nanocomposite (PPy-NFs/Co _{0.8-}	87
	$_{x}Zn_{x}Mn_{0.2}Fe_{2}O_{4})$	
3.3	Substrate cleaning	87

3.3.1	Substrate (glass) cleaning	87
3.3.2	Wafer silicon cleaning	88
3.4	Structural and morphological Characterization	89
3.4.1	X-ray Diffraction (XRD)	89
3.4.2	Field Emission Scanning Electron Microscopy (FESEM)	89
3.4.3	Fourier Transform Infrared Spectrometry (FTIR)	89
3.5	Magnetic Properties	90
3.5.1	Vibrating Sample Magnetometer (VSM)	90
3.6	Optical Measurements	90
3.7	Photodetector Fabrication	91
3.7.1	Characteristic measurements of photoconductive detector	91
3.8	Electrochemical Characterization techniques	92
3.8.1	Cyclic voltammetry Measurement (CV)	92
3.8.2	Galvanostatic charge-discharge Measurement (GCD)	93
3.8.3	Electro-chemical Impedance Measurement (EIS)	93
3.9	Gas sensor	93
3.10	Samples Codes	95
	Chapter Four: Result and Discussion	96
4.1	Introduction	96
4.2	The structural properties	96
4.2.1	X-Ray Diffraction Analysis Results	96
4.2.2	Fourier transform infrared (FTIR) spectroscopy analysis	101
4.2.3	FESEM image analysis	105
4.3	Magnetic properties	111

4.4	optical properties	115
4.5	Photoconductivity of Detector	123
4.6	Electrochemical application	131
4.6.1	Cyclic voltammetry measurements	131
4.6.2	Electrochemical impedance spectroscopy analysis (EIS)	137
4.6.3	Galvanostatic charge discharge measurements	141
4.7	Ammonia gas sensing measurement	146
4.8	Suggestions for future work	153
4.8.1	Conclusions	153
4.8.2	Future work suggestions	155
	References	156

List of Figures

Fig. No.	Figure Caption	P. No.
2.1	Band theory.	19
2.2	Conductivities of insulator, semi-conductors, metals and	20
	CPs.	
2.3	Structure of PPy in the neutral state.	25
2.4	Demonstration of the magnetic moment associated with (a)	31
	an orbiting electron and (b) a spinning electron.	
2.5	Different types of magnetic behavior.	36
2.6	Unit cell of spinel structure MeFe ₂ O ₄	39
2.7	Cation distribution in normal spinel ferrites, mixed spinel	40
	ferrites and inverse spinel ferrites.	
2.8	The energy density of a magnetic particle contains a term	42
	Ksin ² θ , the energy is minimized when $\theta = 0$ or π .	
2.9	The dependence of the relaxation time (τ) as a function of	44
	temperature T (scaled by k_B/KV)	

2.10	Magnetic domains in a bulk material.	45
2.11	(a) 180° and (b) 90° domain wall.	46
2.12	Hysteresis loop.	48
2.13	The magnetocrystalline anisotropy of cobalt.	50
2.14	Schematic of a conventional capacitor.	54
2.15	Schematic of an electrochemical double-layer capacitor.	54
2.16	Schematic diagram of a typical charged EDLC.	56
2.17	Equivalent circuit of three-electrode set-up.	60
2.18	A typical electrochemical capacitor schematic exhibiting the differences between static (rectangular) and faradaic (curved) capacitance.	62
2.19	Plots of the Galvanostatic charge-discharge of (a) EDLC(b) pseudo-capacitive material.	64
2.20	Schematic of typical Nyquist plots.	65
2.21	Photoresponse graph that shows a quicker response time.	67
2.22	Rise and decay time of signal for square-pulse signal.	68
2.23	Schematic representation of x-ray diffraction.	73
2.24	State energy diagram of some possible photophysical process in a typical fluorescent molecule.	79
3.1	Diagram of the preparation materials.	81
3.2	Diagram of the measurements and applications.	81
3.3	Diagram of co-precipitation method pursued by heat treatment in an autoclave reactor.	86
3.4	Diagram of the photocurrent measuring process in the photodetectors.	92
3.5	Shows schematic of three-electrode system.	92
3.6	Electrical circuit setup of gas sensor.	94
4.1	XRD pattern of (PPy-NFs).	98

4.2	XRD patterns of the synthesized $(Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4)$	99
	nanoparticles.	
4.3	FTIR spectra for PPy-NFs and PPy-NFs nanocomposites	101
	include PF1, PF2, PF3, PF4 and PF5.	
4.4	FTIR spectrum of $Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4$ samples.	104
4.5	FESEM images of PPy-NFs at different magnification.	106
4.6	FESEM images of $(Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4)$ samples $(x = 0, $	108
	0.2, 0.4, 0.6 and 0.8) at different magnification.	
4.7	FESEM images of PPy-NFs nanocomposites samples at	110
	different magnification.	
4.8	Magnetization versus applied magnetic field of PPy-NFs,	112
	ferrite nanoparticles and PPy-NFs nanocomposites samples	
	at 300K.	
4.9	Magnetization versus applied magnetic field of	113
4.10	The absorption spectra for PPy-NFs and PPy-NFs	116
	nanocomposite samples.	
4.11	$(\alpha h\nu)^2$ vs. (hv) plots for pure PPy-NFs.	117
4.12	The absorption spectra for ferrite nanoparticles samples.	118
4.13	Diagrams of $(\alpha h \upsilon)^2$ vs. (h υ) for F1, F2, F3, F4 and F5	120
	samples.	
4.14	Diagrams of $(\alpha h \upsilon)^2$ vs. (h υ) for PF1, PF2, PF3, PF4 and	122
	PF5 samples.	
4.15	Variation of light sensitivity for PPy-NFs with various	124
	energy powers.	
4.16	Variation of light sensitivity for ferrite nanoparticles (F1,	127
	F2, F3, F4 and F5) with various light powers.	

4.17	Variation of light sensitivity for PPy-NFs	129
	nanocomposites	
4.18	CV curves of the PPy-NFs.	133
4.19	CV curves of the ferrite nanoparticles (F1, F2, F3, F4 and	135
	F5).	
4.20	CV curves of the PPy-NFs nanocomposite (PF1, PF2, PF3,	137
	PF4 and PFF) samples.	
4.21	Nyquist plots for a) PPy-NFs, b) F1, c) F2, d) F3, e) F4, f)	141
	F5, g) PF1, h) PF2, i) PF3, j) PF4 and k) PF5	
4.22	Galvanostatic charge-discharge for PPy-NFs, ferrite	144
	nanoparticles and PPy-NFs electrodes for supercapacitors.	
4.23	Variation of resistance with time for PPy-NFs sensor.	147
4.24	Variation of resistance with time for ferrite nanoparticles	151
	and PPy-NFs nanocomposite sensors.	
4.25	Variation of resistance with time for ferrite nanoparticles	152
	sensors.	
4.26	Variation of resistance with time for PPy-NFs	152
	nanocomposite sensors.	

Table No.	Table caption	P. No.
3.1	The raw materials of synthesize of (PPy-NFs) synthesis.	82
3.2	The raw materials of synthesize of $(Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4)$.	82
3.3	(MO: Py: FeCl ₃) molar ratio of (PPy-NFs) samples.	83
3.4	Synthesis of $(Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4)$ from basic chemicals	85
	compounds and the weights that had been used.	
3.5	Prepared samples codes.	95
4.1	XRD data of $Co_{0.8-x}Zn_xMn_{0.2}Fe_2O_4$ nanoparticles.	100
4.2	FTIR absorption bands for PPy-NFs and PPy-NFs	102
	nanocomposites include PF1, PF2, PF3, PF4 and PF5.	
4.3	FTIR data for ferrite nanoparticles.	104
4.4	The magnetic parameters for PPy-NFs, ferrite	115
	nanoparticles and PPy-NFs nanocomposite samples.	
4.5	Photosensitivity variation for prepared materials.	130
4.6	R_{ESR} and R_{ct} for the PPy-NFs, ferrite nanoparticles and	139
	PPy-NFs nanocomposites samples.	
4.7	The responsivity, response time and recovery time for	153
	PPy-NFs, ferrite nanoparticles and PPy-NFs	
	nanocomposite samples at 50°C with 30 ppm of NH ₃ gas	
	concentration.	

List of Tables

List of Symbols

Symbol	Meaning	Units
f	Frequency	Hz
θ	Diffraction Angle	Degree
T _c	Curie Temperature	K or °C
T _N	Neel Temperature	K or ^S C
L	Hopping Length	Å
Н	Magnetic Field Strength	A/m
М	Magnetization	emu/g
μ	Magnetic Permeability of Medium	Hm ⁻¹
μ ₀	Permeability of Free Space	$4\pi \times 10^{-7} \text{ Hm}^{-1}$
μ _r	Relative Permeability	Dimensionless
M _s	Saturation Magnetization	emu/g
B _s	Saturation Flux Density	tesla (T)
Br	Remnant Induction	tesla (T)
H _c	Magnetic Coercivity	A/m
$ au_0$	Characteristic Relaxation Time	S
τ_N	Néel Relaxation Time	S
τ_{B}	Brown Relaxation Time	S
τ	Effective Relaxation Time	S
Тв	Blocking Temperature	K
χ	Magnetic Susceptibility	
k _B	Boltzmann's Constant	$1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$
Т	Absolute Temperature	К
h, k, l	Miller Indices	Integer

ρ_{x}	X-ray density	g/cm ³
D	Crystallite Size	nm
Eg	Energy Gap	eV
λ	Wavelength	nm
Q	Electron Charge	С
Ι	Electric Current	Ampere (A)
V	Electric potential	Volt (V)
Е	Electric Field	V.cm ⁻¹
a _{exp}	Experimental Lattice Constant	Å
M _r	Remnant Magnetization	emu/g
α	Optical Absorption Coefficient	-
R %	Response of the Sensor	-
R _{air}	Resistances of the Sensor in Air	Ω
R _{gas}	Resistances of the Sensor in Gas	Ω
σ	Conductivity	$(\Omega.cm)^{-1}$
σ _e	Electrode Conductivity	S.cm ⁻¹
Z _{real}	Real Parts of the Complex Impedance	Ω
Z _{imag}	Imaginary Parts of the Complex Impedance	Ω
С	Capacitance	F
Cs	Specific Capacitances	F.g ⁻¹
m	Active Mass of the Electrode	mg.cm ²

List of Abbreviations

Abbreviation	Definition
CPs	Conducting Polymers
HCPs	Hybrid Conducting Polymers
Ру	Pyrrole
РРу	Polypyrrole
PPy-NFs	Polypyrrole Nanofibers
МО	Methyl Orange
SQUID	Superconducting Quantum Interference Device
НИМО	Higher Unoccupied Molecular Orbitals
LOMO	Lower Occupied Molecular Orbitals
ppm	Parts Per Million
CV	Cyclic Voltammetry
GCD	Galvanostatic Charge-Discharge
MNPs	Magnetic Nanoparticles
VSM	Vibrating Sample Magnetometer
TEM	Transmission Electron Microscopy
XRD	X-Ray Diffraction
FTIR	Fourier Transform Infrared Spectroscopy
FESEM	Field Emission Scanning Electron Microscope
VSM	Vibrating Sample Magnetometer
JCPDS	Joint Committee on Powder Diffraction Standards
ESR	Equivalent Series Resistance
EMI	Electromagnetic Interference
SCE	Saturated calomel electrode

Chapter one

Introduction and Literature Review

1.1 Introduction

This work addresses the characteristics of composite material consisting of polypyrrole nanofibers supported by ferrite nanoparticles. To begin with, polymers are an essential sort of chemical that living would've been more significantly harder without it. Polymer comes from the Greece words poly, which means many, plus mers, which incomes components as well as units with an in height molar mass. Every molecule is comprised of a large number of distinct composition units that are arranged in a logical order. Polymers, also known as macromolecules, are large molecules with a high molecular weight that are made via combining a great number of small molecules called monomers. Polymerization is process of joining monomers together to produce a polymer [1].

Synthesis polymers have been known and used as effective insulators for a long time. Billingham as well as Calvert contend that, "For most of the history of polymer technology, one of the most important characteristics of these polymers is their ability to work as an excellent electrical insulators." Massive efforts have been made in the last two decades to develop innovative materials known as "conducting polymers" (CPs) [2]. Conducting polymers have been extensively studied for optical, electrochemical, and electronic applications due to their unique optical, electrical, and chemical features. When the right elements are doped into products, they can have conductivity ranging from semiconductors to metallic materials [3].

Due to their electric as well as electrochemical properties which are equivalent with those of traditional semiconductors as well as metals, conducting polymers (CPs) have attracted a great attention across both basic plus applied investigation. CPs offer great features such as low manufacturing and treatment temperatures, adjustable conductivity, chemical and structural variety, and structural flexibility [4]. Impactful materials of CPs of good mechanical reliability, flexibility, as well as conductivities have been demonstrated to function as significant physical parts in light-emitting diodes[5], capacitors of electrochemical, actuators plus transistors [6], devices of electrochromic [7], cells of photovoltaic as well as sensors, battery, memories and electromagnetic induction (EMI) shielding [8].

Polyacetylene is the first conductive polymer that was discovered by Alan Heeger, Hideki Shirakawa, and Alan MacDiarmid in1977. After this discovery, a variety of conductive polymers were investigated, including PANI, polypyrrole, polythiophene, PEDOT, besides PPV polymer [9].

Polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh) are the most appealing polymer groups [10]. Over the past decades, these conductive polymers have indeed been studied widely and described. Due to their low cost, great sensitivity, quick reaction, their ability to work at room temperature, those polymers but also its derivatives have frequently used in nanosensors [11]. Because of their exceptional electrical and magnetic properties, spinel ferrites are intriguing ceramic magnetic materials that have been the focus of extensive theoretical and experimental research. Spinel ferrite nanoparticles have remarkable physical and chemical features, including substantial anisotropy, high saturation magnetization, high magnetic permeability, good chemical stability [12], Superparamagnetism, and temperature-dependent hysteresis, among others. It is employed in a variety of applications, including soft magnetic powders, hyperthermia,

magnetic fluids, heat transfer systems, transformer cores, drug delivery orientation, data storage devices, and magnetic sensors [13]. Many ferrites could be classified as magnetism semiconductors due to its distinctive features plus good functional features. They have a wide range of uses in a variety of industries. The magnetic characteristics of ferrites are determined by phase purity and crystalline nature. Magnetorheology[14] and microwave absorption are two further applications of magnetic ferrites [15]. The different ferrites can be synthesized using a variety of processes. The magnetic behavior of ferrites is determined by the structure of ferrites, the cations Spread at the octahedral plus tetrahedral positions, models defects, the nanocrystallites size, and other factors [16].

1.2 Literature Review

- 1. Hernandez et al. published a paper in 2007 about superior quality PPy-NWs made through template-directed chemical preparation. Temperature dependent electrical transport investigations revealed that the specimen was semiconducting with a minimal extent of disorder. For gaseous ammonia, sensors according to single nanowire demonstrated high sensitivity, detection limit, in addition to selectivity. At a concentration of approximately 40 ppm, the sensors provided reliable detection [17].
- 2. Yang et al. demonstrated in 2010 that using a FeCl₃-MO reactive template, they could make polypyrrole (PPy) nanofibers quickly and easily. Chemical sensors were built into the sensor device using the prepared PPy nanofibers to discover NH₃ vapors. In comparison to bulk Polypyrrole, sensor in accordance with PPy-NFs outperformed bulk PPy when it comes to time response plus sensitivity [18].

- 3. Dubal et al. in 2011 Here, electrodeposition process for the production of PPy nanobricks have been tested. X-ray Diffraction, FTIR, TEM, plus SEM are used to characterize these PPy nanobricks. CV in addition GCD methods were used to assess the electrochemical performance of PPy material (electrode). Within the voltage range of 4×10⁻¹ to -6×10⁻¹ Volt in 5×10⁻¹ M sulfuric acid, a great Cs of 47.6×10 F.g⁻¹ had attained. Furthermore, PPy electrode had an 89% discharge/charge efficiency [19].
- 4. Hosseini et al. in 2012 synthesized polypyrrole-MnFe₂O₄ composites by core-shell construction using in situ-polymerization in the existence of surfactant plus doping. FeCl₃ also served as an oxidation factor. XRD, VSM, SEM, FTIR, and the four-wire technique were used to determine the structure and magnetic properties of manganese ferrite nanoparticles. Utilizing vector network analysers in the frequency region from eight to twelve GHz, the microwave-absorbing properties of nanocomposite powders were investigated. At 11.3GHz, A reflection loss of -1.2×10 dB measured as the minimal. The results of spectroanalysis show that Polypyrrole chains in addition to particles of ferrite have a mutual interaction [20].
- 5. Shinde et al. reported in 2013 a low-cost, innovative, in addition to easy chemical production of thin films PPy to supercapacitors applications. XRD, FTIR, and SEM are used to evaluate these PPy films. The electrochemical supercapacitors characteristics for PPy thin films were assessed via CV in a 5×10^{-1} M Sulfuric acid, with an extreme Cs of 32.9×10 F/g with a scan rate about 5mV/s. Furthermore, electrochemical impedance measurements revealed that the (ESR) for thin films PPy are 108×10^{-2} ohm The charge transfer is attributable to both redox and non-redox reactions, as indicated by the Nyquist and Bode plots, which is supported by the findings of charge discharge experiments [21].

- 6. Geng et al. in 2013 synthesized polypyrrole/ γ -Fe₂O₃ hybrid materials in situ via sol-gel polymerization and studied them using FTIR, XRD, and HRTEM. At thirty, sixty, plus ninety Celsius, the sensitivities of gas in ammonia, CO, H₂, acetone and ethanol atmospheres had measured. The gas sensitivities findings revealed which the polypyrrole/ γ -Fe₂O₃ had a great sensitivity for ammonia at a low working temp (<hundred Celsius), overcoming disadvantages of PPy's slow response time and γ -Fe₂O₃ high operating temperature. As a result, the hybrids had crucial and practical properties for the production of gas sensors [22].
- 7. Eeu et al. in 2013 reinforced polypyrrole by reduced graphene oxide plus (Fe₂O₃) to obtain electrochemical stabilization and improvement, A simple one-pot chronoamperometry technique was used to create the ternary nanocomposite film. When comparing the nanocomposite to their individual (polypyrrole) as well as binary (polypyrrole/RGO) counterparts, cyclic voltammetry measurements revealed a two-fold and four-fold increase in current for the nanocomposite. Even after 200 charge/discharge cycles, the film of ternary composite retained its Cs quite well. The PPy/RGO/Fe₂O₃ electrode has a specific capacitance of 1257×10⁻¹ F.g⁻¹, while the Polypyrrole/reduced graphene oxide plus polypyrrole materials (electrodes) have 933×10⁻¹ and 766×10⁻¹ F.g⁻¹, respectively [23].
- 8. Ullah et al. In 2013 investigated the response mechanism of polypyrrole as a sensor to ammonia. The interaction of ammonia with the oligopyrrole lowers the impedance to electron transport across the oligomer backbone. Changes in electronic characteristics like as ionization potential, electron affinity, HOMO, LUMO, band gap, and λ_{max} are also used to assess resistance decrease. The capacity of nPy oligomers to detect ammonia is additionally aided by their electron affinity and band gap (HOMO to LUMO). When

oligopyroles interact with NH₃, band gaps narrow and LUMO energies rise [24].

- 9. Navale et al. In 2014 used a spin coating method on a glass substrate to produce Polypyrrole-iron oxide hybrid nanocomposite sensor films, which were then analyzed for structural and morphological features using XRD, FTIR, and SEM. The hybrid nanocomposites' gas-sensing properties were investigated and compared to Polypyrrole plus α-ferric oxide (Fe₂O₃). This was discovered which polypyrrole/α-ferric oxide (Fe₂O₃) hybrid composites could somewhat compensate for limitations for pristine polypyrrole and ferric oxide. this was discovered that a polypyrrole/α-ferric oxide (Fe₂O₃) (fifty %) hybrid sensing working at room temp can discover Nitrogen dioxide (NO₂) at small concentrations (ten ppm) and high selectivity compared to C₂H₅OH as well as sensitivity (5.6×10%) and superior stabilization (85%) [25].
- 10. Moloudi et al. In 2015 prepared a nanocomposite of hard (BaFe₁₂O₁₉)/soft ferrite, and then produced an in situ polymerisation method to create a PPy-BaFe₁₂O₁₉/Fe₃O₄ multicore-shell. VSM and the four-wire approach were used to characterize the nanocomposite's magnetic characteristics and electrical conductivity, respectively. Electrical conductivity of conducting ferromagnetic polymer nanocomposites is order of $0.5 \times 10 \frac{s}{cm}$, as well as M_s is $0.3 \times 10 \frac{emu}{a}$ as prepared [26].
- 11.Elahi et al. In a 2015 used sol-gel and in situ chemical polymerization to synthesize Zn_{0.5}Ni_{0.45}Mn_{0.05}Fe₂O₄ and polypyrrole-ferrite nanocomposite structures. The formation of a two-phase system is revealed by XRD, FTIR, and FESEM experiments. When ferrite was added to PPy, the phase separation increased. Because of the bonding influence among the metals

cations with the polypyrrole, the electric density for the polypyrrole chain decreased, lowering conductivity. When ferrites are included into a conducting polypyrrol matrix, the dielectric constant and dielectric loss increase. When comparing pure samples to composite materials, the loss tangent was found to have large values. The magnetic characteristics of composites were also affected by the amount of ferrite [27].

- 12.Sun et al. in 2016 synthesized PPy/coated ZnFe₂O₄ double-shelled hollow spheres in a study conducted. The ZnFe₂O₄/PPy composite that emerges combines the benefits of hollow structure and nanocompositing. The hollow interior reduces volume changes during charge and discharge, while the PPy coating improves structural stability and conductivity. The electrochemical performance of the ZnFe₂O₄/PPy composite is much better than that of pristine ZnFe₂O₄ with a double-shelled hollow structure. This study found that combining hollow structure and nanocompositing to develop the electrochemical act of anode materials (Transition metal oxides or TMO) [28].
- 13. Mažeika et al. in 2018 synthesized CoFe₂O₄/polypyrrole composite nanoparticles using a high energy ball mill. For sample characterisation, Mössbauer and FTIR spectroscopies, VSM, and TEM were used. Nanoparticles were exposed to an alternating magnetic field to assess the specific loss power. When comparing CoFe₂O₄ nanoparticles to CoFe₂O₄/polypyrrole composite nanoparticles, some differences in coercivity were detected and explained [29].
- 14. Zhang et al. in 2018 reported new NH₃ gas sensing according to selfassembled Polypyrrole/Zn₂SnO₄ composite. In-situ chemical oxidative polymerization was used to prepare the PPy nanospheres, and C element microspheres had used as a sacrificial model to synthesize the Zn₂SnO₄

hollow nanospheres. The reported materials were characterized using XRD, FTIR, EDS, XPS, TEM, in addition to SEM techniques. When exposed for ammonia gas, gas sensor characteristics for Polypyrrole/Zn₂SnO₄ nanofilm had studied. In terms of a reduction discovery limit, greater responsiveness, shorter response with recovery time, and exceptional repetition to ammonia gas, the PPy/Zn₂SnO₄ Nanofilm sensor outperformed its pristine Polypyrrole and Zn₂SnO₄. The substantial improvement in gas sensor characteristics for PPy/Zn₂SnO₄ Nanofilm is attributed to the deprotonation/protonation technique of NH₃ adsorption/desorption on the Polypyrrole surface, unique relations at the p-n Hetero junction, as well as large surface area of the PPy/Zn₂SnO₄ composite [30].

- 15. Assar et al. in 2019 prepared Co_{0.5}Ni_{0.2}Li_{0.15}Fe_{2.15}O₄/Polypyrrole using the mechano-synthetic technique. Their magnetic plus structural features were studied. The rise of the nonmagnetic Polypyrrole shell in comparison with nanoparticles magnetic in the core resulted in a linear drop in M_s, M_r, K₁, and an almost stable value of H_c, which was found and explained. This could also explain why the composite samples' σ_{dc} values were higher than the pure models'. The frequency dependency of the composite models ε', ε", σ'_{ac}, and tanδ has been studied. (Z'-Z") graphs of composite models revealed various overlapping semi-circles based on electrical variables. The semicircles relate to series parallel resistor-capacitor circuits. Depending on the electrical conditions, the composite models' (Z'-Z") charts revealed distinct overlapped semi-circles parts. These semi circles relate parallel series resistor-capacitor pairings [31].
- 16.Scindia et al. in 2019 prepared the composite electrode of $NiFe_2O_4/PPy$ using easy with low cost in-situ chemical oxidation route in an aqueous medium by the presence of surfactant and described of the structural,

spectral, electrical, morphological and thermal investigations. The super capacitive behavior of NFO/Polypyrrole material (electrode) had studied in an aqueous 10^{-1} N sulfuric acid (electrolyte sol). The NFO/polypyrrole electrode has the maximum Cs of 72.166×10 F.g⁻¹. The specific power, specific energy, as well as coulomb efficiency, respectively, were found to be $61.8 \times 10^{-1} \frac{\text{kW}}{\text{kg}}$, $519.5 \times 10^{-1} \frac{\text{Wh}}{\text{kg}}$, with 990.8×10^{-1} %. This material electrode demonstrated electrochemical stabilization after $(10^3)^{\text{th}}$ continuous CD cycles, and it was found to be an effective electrode substance for supercapacitors deices [32].

- 17. Chunping Xu et al. in 2019 used a one-step hydrothermal technique to synthesize polypyrrole-modified iron oxide nanomaterials. By performing the synthesis at various temperatures, the impact of the reaction temperature was examined. Nanohybrids manufactured were incorporated into electrodes to create supercapacitors devices. Controlling the (C+N)/Fe ratio on the surface, which is highly sensitive on reaction temperature, allowed for effective tailoring of the electrochemical characteristics. Ppy@Fe₂O₃-180°C nanohybrid had the highest electrochemical performance, with a noticeable capacitance amount of 56×10 F.g⁻¹ at a current density of 5 A.g⁻¹ in addition to an extraordinary cycling stability of $9.73 \times 10\%$ after 2×10^4 cycles of CD at 4×10 A.g⁻¹ [33].
- 18. Yağan in 2019: Use aqueous solution comprising monomer and oxalic acid, polypyrrole was electropolymerized potentiodynamically on a prepassivated Fe electrode. PPy was electropolymerized between 3×10^{-1} and 8×10^{-1} Volt against saturated calomel electrode (SCE) at a scan rate about $20 \frac{mV}{s}$. CV, GCD cycling, plus EIS were utilized to investigate the electrochemical features of PPy coated Fe electrode. The greatest specific capacitance of a Fe

electrode covered with PPy is 2280 F.g⁻¹ [34].

- 19.Liu et al. in 2019 used a simple and quick microwave approach to manufacture polypyrrole nanofiber (PPyNF)/NiO_x composites. The samples were analyzed using differential scanning calorimetry and thermal gravimetric analysis, as well as X-ray photoelectron spectroscopy and SEM. PPyNF/NiOx nanocomposites were also electrochemically analyzed via GCD, CV, as well as EIS methods. They are the higher Cs (65.7×10 F.g⁻¹ at 0.05×10 A/g, which means that it can be used in supercapacitors [35].
- 20. Wang et al. in 2020 synthesized polypyrrole/Fe₂O₃ nanocomposites using a one-step hydrothermal method in order to improve polypyrrole's gas response to NO₂. XPS, HRTEM, and TG studies have all shown the presence of ferric oxide in composites. At 50°C, the polypyrrole/Fe₂O₃ sensor has a good selectivity for NO₂ and a fast response. The polypyrrole/Fe₂O₃ materials are easier to manufacture in comparison to other polypyrrole/metal oxide materials, and the gas sensor has a greater response of 220.7%, a lower detection limit of 0.1 ppm, and a strong linear relationship when NO₂ concentrations vary from 0.1 ppm to 10 ppm. In comparison to pure polypyrrole and Fe₂O₃, the gas response is dramatically improved [36].

1.3 Aims of the study

- 1- By simple methods and effective cost, polypyrrole nanofibers (PPy-NFs) were synthesized by chemical oxidative polymerization technique. Nanoparticles of Zn_{0.8}Mn_{0.2}Fe₂O₄ were prepared by the co-precipitation method and followed by heat treatment in an autoclave reactor As well as, (PPy-NFs/Co_{0.8-x}Zn_xMn_{0.2}Fe₂O₄) nanocomposites from PPy-NFs and ferrite nanoparticles.
- 2- Studying the influence of zinc replacement in magnetite structure on the structural properties, magnetic properties, optical properties, and performance efficiency of manufactured devices.
- 3- Selection of optimal conditions for the preparation of samples and their uses in electrochemical applications such as Supercapacitors, Optoelectronic Applications, and Gas Sensing.