# On θ-Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid #### On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil\*1 and Intisar Elaiwi Ubaid2 <sup>1</sup>Department of Mathematics - College of Science - Diyala University, Diyala-Iraq <sup>2</sup>College of Education - Al-Mustansiriya University \*Jamil291078@yahoo.com Received: 10 September 2018 Accepted: 14 October 2018 ### **Abstract** In this work, we study and introduce new type of open sets is called $\vartheta$ -open. We characterize these sets and investigate some of their mainly properties. Further, we present various functions are associated with $\vartheta$ -open, called $\vartheta$ -open, M $\vartheta$ -open, and weakly $\vartheta$ -open. We also discuss many characterizations, properties, and relations are discussed. Finally, we study $\vartheta D$ -separation axioms by using $\vartheta D$ -set **Keywords:** $\vartheta$ -open set, $\vartheta$ -open function, M $\vartheta$ -open function, weakly $\vartheta$ -open function, $\vartheta D$ -set حول المجموعة المفتوحة من النمط -9 وبعض تطبيقاتها جمیل محمود جمیل<sup>1</sup> و انتصار علیوی عبید<sup>2</sup> اقسم الرياضيات - كلية العلوم -جامعة ديالي 2 كلية التربية -الجامعة المستنصرية ### الخلاصة في هذا البحث قمنا بدر اسة نوع جديد من المجموعات المفتوحة اسميناها المجموعة المفتوحة من النمط $\theta$ حيث قمنا بدر اسة عدة تمييزات حول المجموعات المفتوحة من النمط $\theta$ وبرهنا عدة نظريات حول هذه المجموعة و عرفنا عدة دوال مرتبطة حول تلك المجموعة منها الدوال المفتوحة و المفتوحة الضعيفة من النمط $\theta$ و درسنا العلاقات التي تربط بينها. وقمنا بدر اسة بديهيات الفصل من النمط $\theta$ و ذلك باستخدام المجموعة من النمط $\theta$ . الكلمات المفتاحية: المجموعة المفتوحة $\theta$ ، المجموعة المغلقة $\theta$ ، الدالة المفتوحة $\theta$ ، الدالة المفتوحة M، الدالة المفتوحة الضعيفة $\theta$ ، المجموعة من النمط D. ### On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid #### Introduction In 1963, Levine N. [1], detected and discussed the notion of semi-open set furthermore, semicontinuity properties were investigated. The concept of $\delta$ -open was introduced by Velicko N. [2], he studied some of their fundamental properties. Since then the notion had been studied by several literatures. Later, Ekici E. [3] discussed $e^*$ -open and $(D, S)^*$ . In 2011, Al-magharabi and Mubarki [4] studied Z-open and z-continuous functions. After that Mubarki and others [5] introduced $\beta^*$ -open set and $\beta^*$ - continuous functions. In 1985, Rose D. and Jankovich [6], [7] have defined and studied the concepts of weakly open and weakly closed mappings in topological spaces. #### **Preliminaries** In this work any subset W of a topological space $(X,\mathfrak{F})$ , $\mathfrak{F}int(W)$ , $\mathfrak{F}cl(W)$ are denoted for interior and closure respectively. **Definition 2.1:** Consider U be any subset of a topological space $(X,\mathfrak{F})$ is named by semiopen [1] ( resp., pre-open [8], $\alpha$ -open [9], $e^*$ -open [3] and $\beta$ -open [10]) if $U \subseteq \Im{cl} \Im{int} (U)$ (resp., $U \subseteq \Im int \Im cl(U)$ , $U \subseteq \Im int \Im cl \Im int(U)$ , $U \subseteq \Im cl \Im int \Im cl_{\delta}(U)$ and $U \subseteq$ $\Im cl \Im int \Im cl(U)$ . **Definition 2.2:** [2] Consider W be any subset of topological space $(X,\mathfrak{F})$ is named by $\theta$ -open if any $x \in W$ , there is an open set G s.t. $x \in G \subseteq \mathfrak{I}cl(G) \subseteq W$ . The complement $\theta$ -open set is called $\theta$ -closed. **Definition 2.3:** [2] Consider W be any subset of topological space $(X,\mathfrak{F})$ is named $\delta$ -open if for each $x \in U$ , there exists an open set G such that $x \in G \subseteq \Im int \Im cl(G) \subseteq W$ . The complement $\delta$ -open set is called $\delta$ -closed. **Definition 2.4**: The union of any semi-open [1](resp., pre-open [8], $\alpha$ -open [6], $\theta$ -open [2], and $\beta$ -open [10], $\delta$ -open [11]) of topological space $(X,\mathfrak{F})$ sets contained in a subset A is called semi-interior (resp., pre-interior, $\alpha$ -interior, $\delta$ -interior, $\theta$ -interior, $e^*$ -interior, and $\beta$ - P-ISSN: 2222-8373 Vol: 15 No:1, January 2019 121 E-ISSN: 2518-9255 ### On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid interior ) of A. And its denoted by sint(A) (resp., $\mathfrak{I}pint(A)$ , $\mathfrak{I}aint(A)$ , $\mathfrak{I}int_{\theta}(A)$ , $\mathfrak{I}int_{\delta}(A)$ , $\mathfrak{I}e^*int(A)$ and $\mathfrak{I}\betaint(A)$ ). **Definition 2.5:** The intersection of all semi-closed (resp., pre-closed, $\alpha$ -closed, $\theta$ -closed, $\delta$ -closed and $\beta$ -closed) of topological space $(X,\mathfrak{F})$ containing subset A is called semi-closure, pre-closure, $\alpha$ -closure, $\theta$ -closure, and $\beta$ -closure of A, and its denoted by $\Im scl(A)$ , $\Im pcl(A)$ , $\Im cl_{\theta}(A)$ , $\Im cl_{\theta}(A)$ , $\Im cl_{\theta}(A)$ and $\Im \beta cl(A)$ . **Definition 2.6:** [12] A subset W of a topological space $(X, \mathfrak{F})$ is named by b-open set if $W \subseteq \mathfrak{F}$ $\mathcal{F}$ $\mathcal{F}$ is denoted by $\mathcal{F}$ $\mathcal{F}$ $\mathcal{F}$ is denoted by is denoted by $\mathcal{F}$ $\mathcal{F}$ is denoted by in $\mathcal{F}$ is denoted by $\mathcal{F}$ is denoted by $\mathcal{F}$ in $\mathcal{F}$ is denoted by $\mathcal{F}$ is denoted by $\mathcal{F}$ in $\mathcal{F}$ is denoted by $\mathcal{F}$ in $\mathcal{F}$ is denoted by $\mathcal{F}$ in $\mathcal{F}$ in $\mathcal{F}$ in $\mathcal{F}$ is denoted by $\mathcal{F}$ in $\mathcal{F}$ in $\mathcal{F}$ in $\mathcal{F}$ in $\mathcal{F}$ **Definition 2.7**: [13] A topological space $(X, \mathfrak{I})$ is named by locally indiscrete if any open subset of X is closed. **Definition 2.8:** [14] A topological space $(X, \mathfrak{F})$ is named by extremally disconnected if the closure of any open subset of topological space X is also open. **Proposition 2.9:** [15] Consider W be a subset of topological space $(X, \mathfrak{I})$ . If $W \in \beta O(X)$ , then $\mathfrak{I}cl(W) = \mathfrak{I}cl_{\delta}(W)$ **Definition 2.10**: A mapping $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named by - 1) contra closed [16] if f(U) is open set in Y, for every closed set U in X. - 2) weakly open [6] if $f(U) \subseteq \zeta int(f(\Im cl(U)))$ for every subset U in X. **Definition 2.11:** [17] A map $f: (X, \mathfrak{F}) \to (Y, \zeta)$ is named strongly continuous if for each ubset U of X, $f(\mathfrak{F}cl(U)) \subseteq f(U)$ . $\theta$ –open set **Definition 3.1.:** The subset W of a topological space $(X, \mathfrak{F})$ is named - 1) $\theta$ -open set if $W \subseteq \Im cl \Im int (W) \cup \Im int \Im cl \Im int <math>\Im cl_{\delta}(W)$ . - 2) $\vartheta$ -closed set if $\Im int \Im cl(W) \cap \Im cl \Im int \Im cl \Im int_{\delta}(W) \subseteq W$ . # On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid The collection of every $\vartheta$ -open sets (resp., $\vartheta$ closed) in topological space $(X, \mathfrak{F})$ is denoted by $\vartheta O(X)$ (resp., $\vartheta C(X)$ ). **Definition 3.2:** Let $\mathbb{N}$ be a subset of a topological space $(X, \mathfrak{J})$ and let $x \in X$ . We called that $\mathbb{N}$ is $\boldsymbol{\vartheta}$ -neighborhood of x, if there is $\boldsymbol{\vartheta}$ -open set U such that $x \in U \subseteq \mathbb{N}$ . **Proposition 3.3:** Every $\alpha$ -open is $\theta$ -open set. **Proof:** Assume that W be $\alpha$ –open subset of topological space $(X, \mathfrak{F})$ , then $W \subseteq \mathfrak{F}$ int $\mathfrak{F}$ cl $\mathfrak{F}$ in topological space $(X,\mathfrak{F})$ . **Proposition 3.4:** For any subset A of topological space $(X, \mathfrak{F})$ . If A is semi-open set, then A is $\theta$ -open set. **Proof**: Straightforward. However, the inverse direction of Proposition 3.4 may not satisfy in general as shown in the next example **Example 3.5:** Consider $X = \{a, b, c, d\}$ with the topology $\mathfrak{F} = \{\phi, X, \{d\}, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}$ . clearly $\{b\}$ is $\boldsymbol{\vartheta}$ -open set but it is not semi-open set. **Proposition 3.6:** Every $\theta$ -open is $e^*$ – open set. **Proof:** Straightforward. **Proposition 3.7:** Every $\beta$ –open and $\vartheta$ -open set is b – open set **Proof:** Consider W be a $\boldsymbol{\vartheta}$ -open set in topological space(X, $\mathfrak{I}$ ), then $W \subseteq \mathfrak{I}$ sint $(W) \cup \mathfrak{I}$ int $\mathfrak{I}$ cl $\mathfrak{I}$ int $\mathfrak{I}$ cl $_{\delta}(W)$ . And since A is $\beta$ -open, then by Proposition 2.9, $W \subseteq \mathfrak{I}$ cl $\mathfrak{I}$ int $(W) \cup \mathfrak{I}$ int $\mathfrak{I}$ cl(W). Hence W is b-open. **Proposition 3.8:** For any subset W of topological space $(X,\mathfrak{F})$ , if $W \in \delta C(X) \cap \vartheta O(X)$ , then $W \in BO(X)$ **Proof:** straightforward. ### On $\vartheta$ -Open Set and Some of its Applications #### Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid **Proposition 3.9:** Let $\{W_{\gamma}: \gamma \in I\}$ be a collection of $\boldsymbol{\vartheta}$ -open sets subsets of topological space $(X,\mathfrak{F})$ . Then $\bigcup \{W_{\gamma}: \gamma \in I\}$ is $\boldsymbol{\vartheta}$ -open set. **Proof:** Consider $W_{\gamma}$ be an $\boldsymbol{\vartheta}$ -open set for each $\gamma$ . Then $W_{\gamma} \subseteq \mathbb{S}cl\ \mathbb{S}int\ (W_{\gamma}) \cup \mathbb{S}int\ \mathbb{S}cl\ \mathbb{S}int\ \mathbb{S}cl_{\delta}(W_{\gamma})$ . That is $\bigcup W_{\gamma} \subseteq \mathbb{S}(U) \mathbb{S}(U)$ **Remark 3.10:** Arbitrary intersection of $\vartheta$ -closed is also $\vartheta$ -closed. **Proof:** By complementation. The intersection of any two is $\vartheta$ -open sets need not be $\vartheta$ -open set as showing in the following example **Example 3.11:** Consider $X = \{a, b, c, d\}$ with the topology $\mathfrak{F} = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$ , then $A = \{a, b, d\}$ and $B = \{c, d\}$ are both $\boldsymbol{\vartheta}$ -open sets but $A \cap B = \{d\}$ is not $\boldsymbol{\vartheta}$ -open set **Proposition 3.12:** Let A be any an open set in topological space $(X, \mathfrak{F})$ and B be a $\boldsymbol{\vartheta}$ -open set in X, then $A \cap B$ is $\boldsymbol{\vartheta}$ -open set in X. **Proof:** Assume that B be a $\mathfrak{G}$ -open set in X, then $B \subseteq \mathfrak{S}cl\ \mathfrak{I}int\ (B) \cup \mathfrak{I}int\ \mathfrak{I}cl\ \mathfrak{I}int\ \mathfrak{I}cl_{\delta}(B) \Longrightarrow A \cap B \subseteq A \cap (\mathfrak{I}cl\ \mathfrak{I}int\ (B) \cup \mathfrak{I}int\ \mathfrak{I}cl\ \mathfrak{I}int\ \mathfrak{I}cl_{\delta}(B)) = (A \cap \mathfrak{I}cl\ \mathfrak{I}int(B)) \cup (A \cap \mathfrak{I}int\ \mathfrak{I}cl\ \mathfrak{I}int\ \mathfrak{I}cl_{\delta}(B)) \subseteq$ $(\operatorname{\mathfrak{I}cl}(A\cap\operatorname{\mathfrak{I}int}(B)))\cup(\operatorname{\mathfrak{I}int}(A)\cap\operatorname{\mathfrak{I}int}\operatorname{\mathfrak{I}cl}\operatorname{\mathfrak{I}int}\operatorname{\mathfrak{I}cl}_{\delta}(B)$ nt tion n set in nected ed 124124124124124 # On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid **Proposition 3.13:** Let $(Y, \mathfrak{I}_Y)$ be an open subspace of topological space $(X, \mathfrak{I})$ and let A be any set in Y. If A is $\theta$ -open set in Y, then A is $\theta$ -open set in X. **Remark 3.14:** Let $(Y, \mathfrak{I}_Y)$ be any subspace of topological space $(X, \mathfrak{I})$ and let A be any set in Y. If A is $\theta$ -open set in X, then A is $\theta$ -open set in Y **Proof:** Straightforward. **Definition 3.15:** Let $(X, \mathfrak{F})$ be any topological space and A be a subset of X. A point p of subset U of X is called $\theta$ - interior point of A, if there exists $\theta$ - open set G such that $p \in G \subseteq U$ . The set of every $\theta$ - interior points of A is said to be $\theta$ - interior set and its denoted by $\mathfrak{F}int_{\theta}(U)$ . # On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid **Proposition 3.16:** For any subset U of topological space $(X, \tau)$ , $\Im int(U) \subseteq \Im aint(U) \subseteq \Im sint(U) \subseteq \Im int_{\vartheta}(U) \subseteq \Im e^*int(U)$ . **Proof:** Straightforward. **Proposition 3.17:** If A and B are sets in topological space $(X, \tau)$ , then 1) $\Im int_{\vartheta}(\phi) = \phi$ and $\Im int_{\vartheta}(X) = X$ 2) $\Im int_{\vartheta}(U) \subseteq U$ 3) If $U \subseteq V$ then $\mathfrak{I}int_{\vartheta}(U) \subseteq \mathfrak{I}int_{\vartheta}(V)$ **Definition 3.18**: Let $(X, \tau)$ be any topological space and A be a subset of X. The intersection of all $\vartheta$ - closed sets containing A is called $\vartheta$ - closure of U and is denoted by $\Im cl_{\vartheta}(U)$ **Proposition 3.19**: Let G be any subset of a topological space $(X, \tau)$ . Then $x \in \mathfrak{F}cl_{\vartheta}(G)$ iff for every $\vartheta$ -open set U containing x, $U \cap G \neq \phi$ . **Proof:** Straightforward. **Proposition 3.20**: For any subset U of topological space $(X, \tau)$ , $\mathfrak{F}cl_{\vartheta}(U) \subseteq \mathfrak{F}scl(U) \subseteq \mathfrak{F}cl(U)$ . **Proof**. Obvious. Some $\vartheta$ -open mappings: **Definition 4.1**: A map $f:(X,\mathfrak{J}) \to (Y,\zeta)$ is named - 1) M $\boldsymbol{\vartheta}$ -open if the image of any $\boldsymbol{\vartheta}$ -open set in X is $\boldsymbol{\vartheta}$ -open subset of Y. - 2) M $\boldsymbol{\vartheta}$ -closed if the image of any $\boldsymbol{\vartheta}$ -closed set in X is $\boldsymbol{\vartheta}$ -closed subset of Y. **Definition 4.2:** A function $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named 1) $\theta$ - open if the image of every open set in X is an $\theta$ -open subset of Y. # On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid 2) pre $\theta$ -open if the image of every $\theta$ -open set in X is an open subset of Y. **Proposition 4.3.**: Let $f:(X,\mathfrak{F})\to (Y,\zeta)$ be a function, then the following are equivalents: - 1) f is M $\theta$ -open - 2) For every subset G of X, $f(\Im int_{\theta}(G)) \subseteq \zeta int_{\theta}(f(G))$ . - 3) For every $x \in X$ , and for each $\theta$ -neighborhood W of x in X, there exists $\theta$ -neighborhood H of f(x) in Y such that $H \subseteq f(W)$ . **Proof**: (1) $\Longrightarrow$ (2) Assume that f is M $\vartheta$ -open. Since $\Im int_{\vartheta}(G) \subseteq G$ , then $f(\Im int_{\vartheta}(G)) \subseteq f(G)$ . By definition of M $\vartheta$ -open, $f(\Im int_{\vartheta}(G))$ is $\vartheta$ -open set in Y contained in f(G). Thus $f(\Im int_{\vartheta}(A)) \subseteq \zeta int_{\vartheta}(f(G))$ . (2) $\Longrightarrow$ (3) Let U be $\boldsymbol{\vartheta}$ -neighborhood of x, then there is a $\boldsymbol{\vartheta}$ -open set V in X such that $x \in W \subseteq U$ . By (2), we get $f(W) = f(\mathfrak{I}int_{\vartheta}(W)) \subseteq \zeta int_{\vartheta}(f(W))$ , that is H = f(W) be a $\boldsymbol{\vartheta}$ -open set in Y s.t. $f(x) \in H \subseteq f(W)$ . (3) $\Rightarrow$ (1) Consider U be an $\boldsymbol{\vartheta}$ -open set in X then for any $x \in U$ , there exits $\boldsymbol{\vartheta}$ -neighborhood W of f(x) such that $W_{f(x)} \subseteq f(U)$ . This implies that $f(U) = \bigcup \{W_{f(x)} : x \in U\}$ is $\boldsymbol{\vartheta}$ -open set. Hence f is M $\boldsymbol{\vartheta}$ -open. **Proposition 4.4**: Let $f:(X,\mathfrak{F}) \to (Y,\zeta)$ be a surjective function, then f is M $\boldsymbol{\vartheta}$ -open iff the image of every $\boldsymbol{\vartheta}$ -closed set in X is $\boldsymbol{\vartheta}$ -closed set in Y. **Proof:** Obvious. **Proposition 4.5:** Let $f:(X,\mathfrak{J})\to (Y,\zeta)$ be a map and $\beta$ be any base for topological $(X,\mathfrak{J})$ . Then f is $\theta$ -open if and only if f(U) is $\theta$ -open set for each $U \in \beta$ **Proof:** Assume that f is $\vartheta$ -open and since $U \in \beta$ , then B is an open set in topological space $(X, \mathfrak{J})$ and so f(U) is $\vartheta$ -open set in $(Y, \zeta)$ . ### On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid Conversely, let A be an open set, then $A = \bigcup_i U_i$ for $B_i \in \beta$ . It follows that $f(A) = f(\bigcup_i U_i) = \bigcup_i f(U_i)$ . By hypothesis, $f(B_i)$ is $\theta$ -open and by Proposition 3.9, f(A) is $\theta$ -open. Hence f is $\theta$ -open. **Proposition 4.6:** A surjective function $f: X \to Y$ is pre- $\vartheta$ -open if and only if $f(G) \setminus f(X \setminus G)$ is an open set in Y whenever A is $\vartheta$ -open set in X. **Proof:** Suppose that f is pre- $\boldsymbol{\vartheta}$ -open and let G be $\boldsymbol{\vartheta}$ -open set, so f(G) is an open set in Y. Now $f(G) \setminus f(X \setminus G) = f(G) \cap [Y \setminus f(X \setminus G)]$ , since $Y \setminus f(X \setminus G)$ is an open set, therefore $f(G) \setminus f(X \setminus G)$ is an open set in Y. Conversely, suppose that for $\vartheta$ -open set A in X, $f(G) \setminus f(X \setminus G)$ is an open set in Y. Let B be an $\vartheta$ -open set in X, then $f(B) = Y \setminus f(X \setminus B) \setminus f(B)$ is an open set in Y. Hence f is pre- $\vartheta$ -open. **Proposition 4.7:** Let $f:(X,\mathfrak{F})\to (Y,\zeta)$ be a function then f is $M\boldsymbol{\vartheta}$ -open if and only if $\mathfrak{F}int_{\vartheta}(f^{-1}(V))\subseteq f^{-1}(\zeta int_{\vartheta}(V))$ for any $V\subseteq Y$ . **Proof:** Suppose that f is M $\vartheta$ -open. Let A be arbitrary subset of Y, then $f^{-1}(V)$ is a subset of X. By theorem 4.3(2), $f\left(\Im int_{\vartheta}(f^{-1}(V))\right) \subseteq \zeta int_{\vartheta}\left(f(f^{-1}(V))\right)$ this implies that $f\left(\Im int_{\vartheta}(f^{-1}(V))\right) \subseteq \zeta int_{\vartheta}(V)$ . Therefore, $\Im int_{\vartheta}(f^{-1}(V)) \subseteq f^{-1}(\zeta int_{\vartheta}(V))$ for $V \subseteq Y$ . Conversely, suppose the hypothesis is satisfied and let W be a $\boldsymbol{\vartheta}$ -open set in X, then f(W) is a subset of Y. By hypothesis $\mathfrak{I}int_{\vartheta}\left(f^{-1}\big(f(W)\big)\right)\subseteq f^{-1}\left(\zeta int_{\vartheta}\big(f(W)\big)\right)$ that is $\mathfrak{I}int_{\vartheta}(W)\subseteq f^{-1}\left(\zeta int_{\vartheta}\big(f(W)\big)\right)$ . Consequently, $f(W)\subseteq \zeta int_{\vartheta}\big(f(W)\big)$ . Therefore f(W) is $\boldsymbol{\vartheta}$ -open. Hence f is M $\boldsymbol{\vartheta}$ -open. **Proposition 4.8:** Let $f:(X,\tau) \to (Y,\zeta)$ and $g:(Y,\zeta) \to (Z,\rho)$ be two functions then 1) If f and g are both M $\theta$ -open, then $g \circ f: (X, \tau) \to (Z, \rho)$ is also M $\theta$ -open 2) If f is pre $\theta$ open and g is M $\theta$ -open, then $g \circ f: (X, \tau) \to (Z, \rho)$ is pre $\theta$ -open # On θ-Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid **Proof:** Straightforward. **Proposition 4.9:** Let $f:(X,\tau) \to (Y,\zeta)$ and $g:(Y,\zeta) \to (Z,\gamma)$ be two functions. if f is surjective and continuous function, and $g \circ f:(X,\tau) \to (Z,\gamma)$ is $\theta$ -open, then g is $\theta$ -open **Proof:** Let A be an open subset of $(Y, \zeta)$ . Since f is continuous, then $f^{-1}(A)$ is an open set in X. But $g \circ f$ is $\theta$ -open, thus $g \circ f(f^{-1}(A)) = g(A)$ is $\theta$ -open set. Hence g is $\theta$ -open. **Definition 4.10:** A map $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named by weakly $\boldsymbol{\vartheta}$ -open if $f(A) \subseteq \zeta int_{\vartheta} (f(\mathfrak{F}cl(A)))$ , for every A is an open subset of X. **Definition 4.11**: A function $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named by weakly $\boldsymbol{\vartheta}$ -closed if $\zeta cl_{\vartheta} \left( f(\mathfrak{F}int(B)) \right) \subseteq f(B)$ , for every B is a closed subset of X. It is clear that every weakly open is weakly $\theta$ -open. **Theorem 4.12:** Let X be locally indiscrete space, then $f:(X,\mathfrak{F})\to (Y,\zeta)$ is weakly $\boldsymbol{\vartheta}$ -open iff it is $\boldsymbol{\vartheta}$ -open. **Proof:** Sufficiently, let A be an open set in locally indiscrete space X. Since f is weakly $\boldsymbol{\vartheta}$ -open, then $f(A) \subseteq \zeta int_{\vartheta} \left( f (\mathfrak{I} cl(A)) \right) = \zeta int_{\vartheta} \left( f(A) \right)$ and so f(A) is $\boldsymbol{\vartheta}$ -open set in Y. Hence f is $\boldsymbol{\vartheta}$ -open. Necessity, let B be an open set in space X. Since f is $\boldsymbol{\vartheta}$ -open, then $f(B) = \zeta int_{\vartheta} \big( f(B) \big) \subseteq \zeta int_{\vartheta} \big( f(\mathfrak{S}cl(B)) \big)$ . Hence f is weakly $\boldsymbol{\vartheta}$ -open. **Proposition 4.13**: If $f:(X,\mathfrak{I})\to (Y,\zeta)$ is weakly $\boldsymbol{\vartheta}$ -open with strongly continuous, then it is $\boldsymbol{\vartheta}$ -open. **Proof:** Assume that A be an open set in space X. Since f is weakly $\boldsymbol{\vartheta}$ -open, then $f(A) \subseteq \zeta int_{\vartheta} \left( f(\mathfrak{I} cl(A)) \right)$ but f is strongly continuous, thus $f(A) \subseteq \zeta int_{\vartheta} \left( f(\mathfrak{I} cl(A)) \right) \subseteq \zeta int_{\vartheta} \left( f(A) \right)$ . Therefore f(A) is $\boldsymbol{\vartheta}$ -open set in Y. Hence f is $\boldsymbol{\vartheta}$ -open. # On θ-Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid **Proposition 4.14:** Every contra closed is weakly $\theta$ -open. **Proof:** Let $f:(X,\mathfrak{F}) \to (Y,\zeta)$ be contra closed and let A be an open set in space X, then $f(A) \subseteq f(\mathfrak{F}cl(A))$ . Also, f is contra closed $f(\mathfrak{F}cl(A)) = \mathfrak{F}int(f(\mathfrak{F}cl(A))) \subseteq \zeta int_{\vartheta}(f(\mathfrak{F}cl(A)))$ . Hence f is weakly $\vartheta$ -open. **Proposition 4.15**: A function $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is weakly $\vartheta$ -open if and only if for any $x \in X$ , and every open set U of X s.t. $x \in U$ , there exists a $\vartheta$ -open set V in Y containing f(x) such that $V \subseteq f(\mathfrak{F}cl(U))$ . **Proof**: Sufficiently, let U be an open set in X containing x. Since f is weakly $\boldsymbol{\vartheta}$ -open, then $f(U) \subseteq \zeta int_{\vartheta} \left( f(\Im cl(U)) \right)$ . Set $V = \zeta int_{\vartheta} \left( f(\Im cl(U)) \right)$ is a $\boldsymbol{\vartheta}$ -open set in Y containing f(x) such that $V \subseteq f(\Im cl(U))$ . Necessity, let U be an open set in X. Now, for each $x \in U$ , there exists $\boldsymbol{\vartheta}$ -open set V in Y containing f(x) such that $V \subseteq f(\Im cl(U))$ and so, $f(U) \subseteq V \subseteq f(\Im cl(U))$ and since V is $\boldsymbol{\vartheta}$ -open set, then $V \subseteq \zeta int_{\vartheta} \left( f(\Im cl(U)) \right)$ . Therefore, $f(U) \subseteq \zeta int_{\vartheta} \left( f(\Im cl(U)) \right)$ . Hence f is weakly $\boldsymbol{\vartheta}$ -open. **Theorem 4.16**: For a function $f:(X,\mathfrak{I}) \to (Y,\zeta)$ , the following are equivalents: - 1) f is weakly $\theta$ -open - 2) $f(\Im int(B)) \subseteq \zeta int_{\vartheta}(f(B))$ , for each closed set B of X - 3) $f(\Im int \Im cl(A)) \subseteq \zeta int_{\vartheta}(f(\Im cl(A)))$ , for each open set A of X. **Proof**: (1) $\Rightarrow$ (2) let B be closed in X, then $\Im int(B)$ is an open set in X. By (1), $f(\Im int(B)) \subseteq \zeta int_{\vartheta}(f(\Im cl\ \Im int(B)))$ and since B is closed, then it is pre-closed and so $\zeta int_{\vartheta}(f(\Im cl\ \Im int(B))) \subseteq \zeta int_{\vartheta}(f(B))$ that is $f(\Im int(B)) \subseteq \zeta int_{\vartheta}(f(B))$ . ### On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid $(2) \Longrightarrow (3)$ Let A be an open set in X, then cl(A) is closed set in X. By applying (2), we have $f(\Im int \Im cl(A)) \subseteq \zeta int_{\vartheta} (f(\Im cl(A))).$ $(3) \Longrightarrow (1)$ let U be an open set in X, then U is pre-open and by (3), we get $f(U) \subseteq$ $f(\Im int \Im cl(U)) \subseteq \zeta int_{\vartheta}(f(\Im cl(A)))$ . Hence f is weakly $\vartheta$ -open. **Proposition 4.17:** Let $f:(X,\tau) \to (Y,\zeta)$ be bijective function then f is weakly $\boldsymbol{\vartheta}$ -open if and only if $f(\Im int_{\theta}(B)) \subseteq \zeta int_{\theta}(f(B))$ for any subset B of X **Proof:** Sufficiently, let B be subset of a space X and $y \in f(\Im int_{\theta}(B))$ , then there exists $x \in$ $\Im int_{\theta}(B)$ and so there exists an open set G such that $x \in G \subseteq \Im cl(G) \subseteq B$ therefore, y = $f(x) \in f(G) \subseteq f(\Im cl(G)) \subseteq f(B)$ . Since f is weakly $\vartheta$ -open, then $y \in f(G) \subseteq f(G)$ $\zeta int_{\vartheta} (f(\Im cl(G))) \subseteq \zeta int_{\vartheta} (f(B))$ . Hence $f(\Im int_{\vartheta}(B)) \subseteq \zeta int_{\vartheta} (f(B))$ . Necessity, let U be an open subset of a space X. Since $U \subseteq \mathfrak{I}int_{\theta}(\mathfrak{I}cl(U))$ , then $f(U) \subseteq$ $f(\Im int_{\theta} \Im cl(U)) \subseteq \zeta int_{\theta} (f(\Im cl(U)))$ . Hence f is weakly $\theta$ -open. **Proposition 4.18:** If $f:(X,\mathfrak{F})\to (Y,\zeta)$ is weakly $\theta$ -open and strongly continuous, then the image of every open set in X, is $e^*$ -open set in Y. **Proof:** Let A be an open set in space X. Since f is weakly $\theta$ -open, then $f(A) \subseteq$ $\zeta int_{\vartheta}(f(\Im cl(A)))$ and since f is strongly continuous, then $f(A) \subseteq \zeta int_{\vartheta}(f(\Im cl(A))) \subseteq$ $\zeta int_{\theta}(f(A)) \subseteq \zeta \beta int(f(A))$ . Therefore f(A) is $e^*$ -open set in Y. **Proposition 4.19:** If $f:(X,\mathfrak{F})\to (Y,\zeta)$ is almost open and closed, then it is weakly $\theta$ -open. **Proof**: Let A be an open set in space X. Since f is almost open, then $f(A) \subseteq$ $\zeta int \zeta cl(f(A))$ and since f is closed, then $f(A) \subseteq \zeta int \zeta cl(f(A)) \subseteq \zeta int(f(\Im cl(A))) \subseteq \zeta int(f(\Im cl(A)))$ $\zeta int_{\vartheta}(f(\Im cl(A)))$ . Hence f is weakly $\vartheta$ -open. P-ISSN: 2222-8373 Vol: 15 No:1, January 2019 131 E-ISSN: 2518-9255 DOI: http://dx.doi.org/10.24237/djps.1501.487B ### On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid #### $\vartheta D$ -set **Definition 5.1:** A subset A of topological space $(X, \mathfrak{F})$ is named $\boldsymbol{\vartheta D}$ -set if there exist two $\boldsymbol{\vartheta}$ -open sets U and V such that $U \neq X$ and A = U - V. **Proposition 5.2:** Every proper $\theta$ -open set is $\theta D$ -set. **Proof:** Let W be proper subset of topological space $(X,\mathfrak{F})$ and since $W=W-\phi$ , then W is $\partial D$ -set. However, the converse is not true in general as showing in the next example. **Example 5.3:** Consider $X = \{a, b, c, d\}$ with the topology $\mathfrak{F} = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ , then $G = \{a, c\}$ is $\boldsymbol{\vartheta} \boldsymbol{D}$ -set but it is not $\boldsymbol{\vartheta}$ -open set. **Definition 5.4:** A topological space $(X, \mathfrak{I})$ is named - 1) $\partial T_0$ —space if for each two distinct points a and b of X, there is a $\partial$ -open W containing a but not b or containing b but not a. - 2) $\vartheta T_1$ —space if for each two distinct points a and b of X, there are $\vartheta$ -open sets U and V s.t. $a \in U, b \notin U, b \in V$ , and $a \notin V$ . - 3) $\vartheta T_2$ —space if for each two distinct points a and b of X, there are $\vartheta$ -open sets U and V s.t. $a \in U, b \in V$ and $U \cap V = \phi$ . **Definition 5.5:** A topological space $(X, \mathfrak{F})$ is named to be - 1) $\partial D_0$ —space if for each two different points a and b of X, there is a $\partial D$ -open containing a but not b or containing b but not a. - 2) $\vartheta D_1$ —space if for each two different points a and b of X, there are $\vartheta D$ -open sets U and W s.t. $a \in U, b \notin U, b \in W$ , and $a \notin W$ . - 3) $\partial D_2$ —space if for each two different points a and b of X, there is $\partial D$ -open sets U and W s.t. $a \in U$ , $b \in W$ and $U \cap W = \phi$ . # On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid #### **Remark 5.6**: 1) Every $\theta T_i$ -space is $\theta T_{i-1}$ -space. For i=1,2 2) Every $\theta D_i$ -space is $\theta D_{i-1}$ -space. For i=1,2 **Proposition 5.7:** Every $\partial D_1$ -space is $\partial T_0$ -space. **Proof:** Let a and b are two distinct points in $\partial D_1$ —space $(X, \mathfrak{F})$ , then there exist two $\partial D$ - sets U and V such that $a \in U = K - L$ , $b \notin U = K - L$ , $b \in V = M - N$ , $a \notin V = M - N$ , and $K, M \neq X$ . When $a \notin V$ , there are two options 1) $a \notin M$ , and since $b \in V$ , then $b \in M$ , Mis $\vartheta$ -open set 2) $a \in M$ and $a \in N$ . But $b \in V = M - N$ , thus $b \notin N$ , N is $\theta$ -open set. Hence $(X, \mathfrak{F})$ is $\theta T_0$ -space. **Proposition 5.8:** Every $\partial T_i$ -space is $\partial D_i$ -space for i = 0,1,2. **Proof:** when i=1, let a and b be two different points in $\partial T_1$ —space $(X,\tau)$ , then there exist two $\partial$ -open sets G and H such that $a \in G$ , $b \notin G$ , $b \in H$ , and $a \notin H$ . It follows that $a \in G - H$ , $b \notin G - H$ , $b \in H - G$ , and $a \notin H - G$ where $G, H \neq X$ . Hence $(X,\tau)$ is $\partial D_1$ —space. **Proposition 5.9:** Let $(X,\mathfrak{F})$ be a topological space then the following are equivalents: - 1) X is $\vartheta D_2$ -space. - 2) X is $\vartheta D_1$ -space. **Proof:** $1 \Rightarrow 2$ By Remark 5.6 2⇒1 Let a and b be two different points in $\partial D_1$ —space X, then there exist two $\partial D$ -sets U and V such that $a \in U = G_1 - G_2$ , $b \notin U = G_1 - G_2$ , $b \in V = G_3 - G_4$ , $a \notin V = G_3 - G_4$ . For $b \notin U = G_1 - G_2$ , we have two issues. issue1: if $b \notin G_1$ , and $b \in G_3 - G_4$ , then $b \in G_3 - (G_1 \cup G_4)$ . Also, $a \in G_1 - G_2$ and since $a \notin G_3$ , then $a \in G_1 - (G_2 \cup G_3)$ with $[G_3 - (G_1 \cup G_4)] \cap [G_1 - (G_2 \cup G_3)] = \phi$ . # On $\vartheta$ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid If $a \in G_3$ and $a \in G_4$ and since $b \in G_3 - G_4$ , then $G_4 \cap (G_3 - G_4) = \phi$ issue2: $b \in G_1$ and $b \in G_2$ and since $a \in G_1$ , then $G_1 \cap (G_2 - G_1) = \phi$ **Definition 5.10:** A topological space $(X,\mathfrak{F})$ is said to be $\boldsymbol{\vartheta}$ -symmetric, if for every $a,b\in X$ , $a\in \mathfrak{F}cl_{\vartheta}(\{b\})$ implies that $b\in \mathfrak{F}cl_{\vartheta}(\{a\})$ . **Proposition 5.11**: For $\vartheta$ -symmetric space $(X, \mathfrak{I})$ , then the following are valent: 1) X is $$\vartheta T_0$$ -space 2) X is $\vartheta T_1$ -space 3) X is $\vartheta D_1$ -space **Proof:** (1) $\Rightarrow$ (2) let a and b are two distinct points in $\partial T_0$ —space X, then there exists $\partial$ -open set U such that $a \in U \subseteq X - \{b\}$ . It follows $a \notin \mathfrak{T}cl_{\vartheta}(\{b\})$ and since X is $\partial$ -symmetric space, then $b \notin \mathfrak{T}cl_{\vartheta}(\{a\})$ and so $b \in X - \mathfrak{T}cl_{\vartheta}(\{a\})$ . - $(2) \Rightarrow (3)$ By Remark 5.6 - $(3) \Longrightarrow (1)$ By Proposition 5.7 **Proposition 5.12:** Let $f:(X,\tau) \to (Y,\zeta)$ be one to one and onto function. If A is $\partial D$ -set in X, then f(A) is also $\partial D$ -set in Y. **Proof:** Straightforward. **Theorem 5.13:** if $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is one to one, onto, and M $\boldsymbol{\vartheta}$ -open function and $(X,\mathfrak{F})$ is $\boldsymbol{\vartheta}T_i$ -space, then $(Y,\zeta)$ is $\boldsymbol{\vartheta}D_i$ -space (i=0,1,2). **Proof:** We will prove when i = 1, and similarly for others Let $y_1$ and $y_2$ are two different points in $\partial T_1$ —space, then there exists $x_1$ and $x_2$ such that $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$ . But X is $\partial T_1$ —space, therefore there exist two $\partial$ -open sets U and V such that $x_1 \in U$ , $x_2 \notin U$ , $x_2 \in V$ , and $x_1 \notin V$ . By Proposition 5.2 and since f is M $\partial$ -open, then f(U) and f(V) are $\partial D$ -sets such that $y_1 \in f(U)$ , $y_2 \notin f(U)$ , $y_2 \in f(V)$ and $y_1 \notin f(V)$ . Hence Y is $\partial D_1$ —space. ## DIPS DIVALA ENVERSITY COLLEGE SE #### On $\vartheta$ -Open Set and Some of its Applications #### Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid **Proposition 5.14:** let f be one to one and M $\theta$ -open from $(X, \mathfrak{F})$ onto $\theta$ -symmetric space $(Y, \zeta)$ . If $(X, \mathfrak{F})$ is $\theta T_0$ —space, then $(Y, \zeta)$ is $\theta D_1$ —space. **Proof:** By Theorem 5.13, and Proposition 5.11. #### References - **1.** Levine N. American Math. Monthly 1963, 70(1), 36-41. - 2. Velico N.K., American. Math. Soc. Trans. 1968, 78(2), 103-118. - **3.** Ekici E. Mathematica Moravica 2009, 13(1), 29-36. - **4.** EL-Magharabi, A. I.; Mubarki, A.M. International Journal of Mathematical Archive EISSN 2011, 2(10), 1819-1827. - 5. Mubarki, A. M., Al-Rshudi, M. M. and Al-Juhani, M. A. Journal of Taibah University for science 2014, 8, 142-148. - 6. Rose, D. A.; Janković, D.S. Mathematische Nachrichten 1987, 130(1),105-110 - 7. Janković, D. Acta Mathematica Hungarica 1985, 46(1-2), 83-92 - 8. El-Deeb S. N.; Mashhour A. S.; Abd El-Monsef M.E *Proc. Math. Phys. Soc.* Egypt 1982, 53, 47-53. - **9.** Njastad O. *Pacific J. Math.*,1965, 15(3), 961-970. - 10. Abd El-Monsef M. E.; El-Deeb S.N.; Mahmoud R.A. Bull. Fac. Sci. Assuit. Univ.1983, (21)1,1-18. - **11.** Rose D.A. International Journal of Mathematics and Mathematical Sciences 1984, 7(1), 35-40. - 12. Andrijevic, D. Matema. Bech. Vesnisk1996, 48, 59-64. - **13.** Dontchev J., Survey on pre-open sets, The Proceedings of the yatsushiro topological conference 1998, 1-18. - **14.** Di Maio G.; Noiri T. Indian J. Pure Appl. Math. 1985, 18(3), 226-233. - **15.** Guo T. Y. J. Central China Normal Univ. Nature Sci. 1981, 21(2), 169-170. - **16.** Baker, C. W. Math. Today. (Ahmed-abad), 1997,15, 19-24. - 17. Levine N. American. Math. Monthly1960, 67, 269.