

On θ-Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

On ϑ -Open Set and Some of its Applications

Jamil Mahmoud Jamil*1 and Intisar Elaiwi Ubaid2

¹Department of Mathematics - College of Science - Diyala University, Diyala-Iraq ²College of Education - Al-Mustansiriya University

*Jamil291078@yahoo.com

Received: 10 September 2018 Accepted: 14 October 2018

Abstract

In this work, we study and introduce new type of open sets is called ϑ -open. We characterize these sets and investigate some of their mainly properties. Further, we present various functions are associated with ϑ -open, called ϑ -open, M ϑ -open, and weakly ϑ -open. We also discuss many characterizations, properties, and relations are discussed. Finally, we study ϑD -separation axioms by using ϑD -set

Keywords: ϑ -open set, ϑ -open function, M ϑ -open function, weakly ϑ -open function, ϑD -set

حول المجموعة المفتوحة من النمط -9 وبعض تطبيقاتها

جمیل محمود جمیل¹ و انتصار علیوی عبید²

اقسم الرياضيات - كلية العلوم -جامعة ديالي 2 كلية التربية -الجامعة المستنصرية

الخلاصة

في هذا البحث قمنا بدر اسة نوع جديد من المجموعات المفتوحة اسميناها المجموعة المفتوحة من النمط θ حيث قمنا بدر اسة عدة تمييزات حول المجموعات المفتوحة من النمط θ وبرهنا عدة نظريات حول هذه المجموعة و عرفنا عدة دوال مرتبطة حول تلك المجموعة منها الدوال المفتوحة و المفتوحة الضعيفة من النمط θ و درسنا العلاقات التي تربط بينها. وقمنا بدر اسة بديهيات الفصل من النمط θ و ذلك باستخدام المجموعة من النمط θ .

الكلمات المفتاحية: المجموعة المفتوحة θ ، المجموعة المغلقة θ ، الدالة المفتوحة θ ، الدالة المفتوحة M، الدالة المفتوحة الضعيفة θ ، المجموعة من النمط D.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Introduction

In 1963, Levine N. [1], detected and discussed the notion of semi-open set furthermore, semicontinuity properties were investigated. The concept of δ -open was introduced by Velicko N. [2], he studied some of their fundamental properties. Since then the notion had been studied by several literatures. Later, Ekici E. [3] discussed e^* -open and $(D, S)^*$. In 2011, Al-magharabi and Mubarki [4] studied Z-open and z-continuous functions. After that Mubarki and others [5] introduced β^* -open set and β^* - continuous functions. In 1985, Rose D. and Jankovich [6], [7] have defined and studied the concepts of weakly open and weakly closed mappings in topological spaces.

Preliminaries

In this work any subset W of a topological space (X,\mathfrak{F}) , $\mathfrak{F}int(W)$, $\mathfrak{F}cl(W)$ are denoted for interior and closure respectively.

Definition 2.1: Consider U be any subset of a topological space (X,\mathfrak{F}) is named by semiopen [1] (resp., pre-open [8], α -open [9], e^* -open [3] and β -open [10]) if $U \subseteq \Im{cl} \Im{int} (U)$ (resp., $U \subseteq \Im int \Im cl(U)$, $U \subseteq \Im int \Im cl \Im int(U)$, $U \subseteq \Im cl \Im int \Im cl_{\delta}(U)$ and $U \subseteq$ $\Im cl \Im int \Im cl(U)$.

Definition 2.2: [2] Consider W be any subset of topological space (X,\mathfrak{F}) is named by θ -open if any $x \in W$, there is an open set G s.t. $x \in G \subseteq \mathfrak{I}cl(G) \subseteq W$.

The complement θ -open set is called θ -closed.

Definition 2.3: [2] Consider W be any subset of topological space (X,\mathfrak{F}) is named δ -open if for each $x \in U$, there exists an open set G such that $x \in G \subseteq \Im int \Im cl(G) \subseteq W$. The complement δ -open set is called δ -closed.

Definition 2.4: The union of any semi-open [1](resp., pre-open [8], α -open [6], θ -open [2], and β -open [10], δ -open [11]) of topological space (X,\mathfrak{F}) sets contained in a subset A is called semi-interior (resp., pre-interior, α -interior, δ -interior, θ -interior, e^* -interior, and β -

P-ISSN: 2222-8373 Vol: 15 No:1, January 2019 121 E-ISSN: 2518-9255

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

interior) of A. And its denoted by sint(A) (resp., $\mathfrak{I}pint(A)$, $\mathfrak{I}aint(A)$, $\mathfrak{I}int_{\theta}(A)$, $\mathfrak{I}int_{\delta}(A)$, $\mathfrak{I}e^*int(A)$ and $\mathfrak{I}\betaint(A)$).

Definition 2.5: The intersection of all semi-closed (resp., pre-closed, α -closed, θ -closed, δ -closed and β -closed) of topological space (X,\mathfrak{F}) containing subset A is called semi-closure, pre-closure, α -closure, θ -closure, and β -closure of A, and its denoted by $\Im scl(A)$, $\Im pcl(A)$, $\Im cl_{\theta}(A)$, $\Im cl_{\theta}(A)$, $\Im cl_{\theta}(A)$ and $\Im \beta cl(A)$.

Definition 2.6: [12] A subset W of a topological space (X, \mathfrak{F}) is named by b-open set if $W \subseteq \mathfrak{F}$ \mathcal{F} \mathcal{F} is denoted by \mathcal{F} \mathcal{F} is denoted by \mathcal{F} \mathcal{F} is denoted by \mathcal{F} in \mathcal{F} is denoted by \mathcal{F} is denoted by \mathcal{F} in \mathcal{F} is denoted by \mathcal{F} is denoted by \mathcal{F} in \mathcal{F} is denoted by \mathcal{F} in \mathcal{F} is denoted by \mathcal{F} in \mathcal{F} in \mathcal{F} in \mathcal{F} is denoted by \mathcal{F} in \mathcal{F} in \mathcal{F} in \mathcal{F} in \mathcal{F}

Definition 2.7: [13] A topological space (X, \mathfrak{I}) is named by locally indiscrete if any open subset of X is closed.

Definition 2.8: [14] A topological space (X, \mathfrak{F}) is named by extremally disconnected if the closure of any open subset of topological space X is also open.

Proposition 2.9: [15] Consider W be a subset of topological space (X, \mathfrak{I}) . If $W \in \beta O(X)$, then $\mathfrak{I}cl(W) = \mathfrak{I}cl_{\delta}(W)$

Definition 2.10: A mapping $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named by

- 1) contra closed [16] if f(U) is open set in Y, for every closed set U in X.
- 2) weakly open [6] if $f(U) \subseteq \zeta int(f(\Im cl(U)))$ for every subset U in X.

Definition 2.11: [17] A map $f: (X, \mathfrak{F}) \to (Y, \zeta)$ is named strongly continuous if for each ubset U of X, $f(\mathfrak{F}cl(U)) \subseteq f(U)$.

 θ –open set

Definition 3.1.: The subset W of a topological space (X, \mathfrak{F}) is named

- 1) θ -open set if $W \subseteq \Im cl \Im int (W) \cup \Im int \Im cl \Im int <math>\Im cl_{\delta}(W)$.
- 2) ϑ -closed set if $\Im int \Im cl(W) \cap \Im cl \Im int \Im cl \Im int_{\delta}(W) \subseteq W$.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

The collection of every ϑ -open sets (resp., ϑ closed) in topological space (X, \mathfrak{F}) is denoted by $\vartheta O(X)$ (resp., $\vartheta C(X)$).

Definition 3.2: Let \mathbb{N} be a subset of a topological space (X, \mathfrak{J}) and let $x \in X$. We called that \mathbb{N} is $\boldsymbol{\vartheta}$ -neighborhood of x, if there is $\boldsymbol{\vartheta}$ -open set U such that $x \in U \subseteq \mathbb{N}$.

Proposition 3.3: Every α -open is θ -open set.

Proof: Assume that W be α –open subset of topological space (X, \mathfrak{F}) , then $W \subseteq \mathfrak{F}$ int \mathfrak{F} cl \mathfrak{F} in topological space (X,\mathfrak{F}) .

Proposition 3.4: For any subset A of topological space (X, \mathfrak{F}) . If A is semi-open set, then A is θ -open set.

Proof: Straightforward.

However, the inverse direction of Proposition 3.4 may not satisfy in general as shown in the next example

Example 3.5: Consider $X = \{a, b, c, d\}$ with the topology $\mathfrak{F} = \{\phi, X, \{d\}, \{b, c\}, \{b, c, d\}, \{a, b, c\}\}$. clearly $\{b\}$ is $\boldsymbol{\vartheta}$ -open set but it is not semi-open set.

Proposition 3.6: Every θ -open is e^* – open set.

Proof: Straightforward.

Proposition 3.7: Every β –open and ϑ -open set is b – open set

Proof: Consider W be a $\boldsymbol{\vartheta}$ -open set in topological space(X, \mathfrak{I}), then $W \subseteq \mathfrak{I}$ sint $(W) \cup \mathfrak{I}$ int \mathfrak{I} cl \mathfrak{I} int \mathfrak{I} cl $_{\delta}(W)$. And since A is β -open, then by Proposition 2.9, $W \subseteq \mathfrak{I}$ cl \mathfrak{I} int $(W) \cup \mathfrak{I}$ int \mathfrak{I} cl(W). Hence W is b-open.

Proposition 3.8: For any subset W of topological space (X,\mathfrak{F}) , if $W \in \delta C(X) \cap \vartheta O(X)$, then $W \in BO(X)$

Proof: straightforward.

On ϑ -Open Set and Some of its Applications

Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Proposition 3.9: Let $\{W_{\gamma}: \gamma \in I\}$ be a collection of $\boldsymbol{\vartheta}$ -open sets subsets of topological space (X,\mathfrak{F}) . Then $\bigcup \{W_{\gamma}: \gamma \in I\}$ is $\boldsymbol{\vartheta}$ -open set.

Proof: Consider W_{γ} be an $\boldsymbol{\vartheta}$ -open set for each γ . Then $W_{\gamma} \subseteq \mathbb{S}cl\ \mathbb{S}int\ (W_{\gamma}) \cup \mathbb{S}int\ \mathbb{S}cl\ \mathbb{S}int\ \mathbb{S}cl_{\delta}(W_{\gamma})$. That is $\bigcup W_{\gamma} \subseteq \mathbb{S}(U) \subseteq \mathbb{S}(U)$

Remark 3.10: Arbitrary intersection of ϑ -closed is also ϑ -closed.

Proof: By complementation.

The intersection of any two is ϑ -open sets need not be ϑ -open set as showing in the following example

Example 3.11: Consider $X = \{a, b, c, d\}$ with the topology $\mathfrak{F} = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$, then $A = \{a, b, d\}$ and $B = \{c, d\}$ are both $\boldsymbol{\vartheta}$ -open sets but $A \cap B = \{d\}$ is not $\boldsymbol{\vartheta}$ -open set

Proposition 3.12: Let A be any an open set in topological space (X, \mathfrak{F}) and B be a $\boldsymbol{\vartheta}$ -open set in X, then $A \cap B$ is $\boldsymbol{\vartheta}$ -open set in X.

Proof: Assume that B be a \mathfrak{G} -open set in X, then $B \subseteq \mathfrak{S}cl\ \mathfrak{I}int\ (B) \cup \mathfrak{I}int\ \mathfrak{I}cl\ \mathfrak{I}int\ \mathfrak{I}cl_{\delta}(B) \Longrightarrow A \cap B \subseteq A \cap (\mathfrak{I}cl\ \mathfrak{I}int\ (B) \cup \mathfrak{I}int\ \mathfrak{I}cl\ \mathfrak{I}int\ \mathfrak{I}cl_{\delta}(B)) = (A \cap \mathfrak{I}cl\ \mathfrak{I}int(B)) \cup (A \cap \mathfrak{I}int\ \mathfrak{I}cl\ \mathfrak{I}int\ \mathfrak{I}cl_{\delta}(B)) \subseteq$

 $(\operatorname{\mathfrak{I}cl}(A\cap\operatorname{\mathfrak{I}int}(B)))\cup(\operatorname{\mathfrak{I}int}(A)\cap\operatorname{\mathfrak{I}int}\operatorname{\mathfrak{I}cl}\operatorname{\mathfrak{I}int}\operatorname{\mathfrak{I}cl}_{\delta}(B)$ nt tion n set in nected ed 124124124124124

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Proposition 3.13: Let (Y, \mathfrak{I}_Y) be an open subspace of topological space (X, \mathfrak{I}) and let A be any set in Y. If A is θ -open set in Y, then A is θ -open set in X.

Remark 3.14: Let (Y, \mathfrak{I}_Y) be any subspace of topological space (X, \mathfrak{I}) and let A be any set in Y. If A is θ -open set in X, then A is θ -open set in Y

Proof: Straightforward.

Definition 3.15: Let (X, \mathfrak{F}) be any topological space and A be a subset of X. A point p of subset U of X is called θ - interior point of A, if there exists θ - open set G such that $p \in G \subseteq U$. The set of every θ - interior points of A is said to be θ - interior set and its denoted by $\mathfrak{F}int_{\theta}(U)$.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Proposition 3.16: For any subset U of topological space (X, τ) , $\Im int(U) \subseteq \Im aint(U) \subseteq \Im sint(U) \subseteq \Im int_{\vartheta}(U) \subseteq \Im e^*int(U)$.

Proof: Straightforward.

Proposition 3.17: If A and B are sets in topological space (X, τ) , then

1) $\Im int_{\vartheta}(\phi) = \phi$ and $\Im int_{\vartheta}(X) = X$

2) $\Im int_{\vartheta}(U) \subseteq U$

3) If $U \subseteq V$ then $\mathfrak{I}int_{\vartheta}(U) \subseteq \mathfrak{I}int_{\vartheta}(V)$

Definition 3.18: Let (X, τ) be any topological space and A be a subset of X. The intersection of all ϑ - closed sets containing A is called ϑ - closure of U and is denoted by $\Im cl_{\vartheta}(U)$

Proposition 3.19: Let G be any subset of a topological space (X, τ) . Then $x \in \mathfrak{F}cl_{\vartheta}(G)$ iff for every ϑ -open set U containing x, $U \cap G \neq \phi$.

Proof: Straightforward.

Proposition 3.20: For any subset U of topological space (X, τ) , $\mathfrak{F}cl_{\vartheta}(U) \subseteq \mathfrak{F}scl(U) \subseteq \mathfrak{F}cl(U)$.

Proof. Obvious.

Some ϑ -open mappings:

Definition 4.1: A map $f:(X,\mathfrak{J}) \to (Y,\zeta)$ is named

- 1) M $\boldsymbol{\vartheta}$ -open if the image of any $\boldsymbol{\vartheta}$ -open set in X is $\boldsymbol{\vartheta}$ -open subset of Y.
- 2) M $\boldsymbol{\vartheta}$ -closed if the image of any $\boldsymbol{\vartheta}$ -closed set in X is $\boldsymbol{\vartheta}$ -closed subset of Y.

Definition 4.2: A function $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named

1) θ - open if the image of every open set in X is an θ -open subset of Y.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

2) pre θ -open if the image of every θ -open set in X is an open subset of Y.

Proposition 4.3.: Let $f:(X,\mathfrak{F})\to (Y,\zeta)$ be a function, then the following are equivalents:

- 1) f is M θ -open
- 2) For every subset G of X, $f(\Im int_{\theta}(G)) \subseteq \zeta int_{\theta}(f(G))$.
- 3) For every $x \in X$, and for each θ -neighborhood W of x in X, there exists θ -neighborhood H of f(x) in Y such that $H \subseteq f(W)$.

Proof: (1) \Longrightarrow (2) Assume that f is M ϑ -open. Since $\Im int_{\vartheta}(G) \subseteq G$, then $f(\Im int_{\vartheta}(G)) \subseteq f(G)$. By definition of M ϑ -open, $f(\Im int_{\vartheta}(G))$ is ϑ -open set in Y contained in f(G). Thus $f(\Im int_{\vartheta}(A)) \subseteq \zeta int_{\vartheta}(f(G))$.

(2) \Longrightarrow (3) Let U be $\boldsymbol{\vartheta}$ -neighborhood of x, then there is a $\boldsymbol{\vartheta}$ -open set V in X such that $x \in W \subseteq U$. By (2), we get $f(W) = f(\mathfrak{I}int_{\vartheta}(W)) \subseteq \zeta int_{\vartheta}(f(W))$, that is H = f(W) be a $\boldsymbol{\vartheta}$ -open set in Y s.t. $f(x) \in H \subseteq f(W)$.

(3) \Rightarrow (1) Consider U be an $\boldsymbol{\vartheta}$ -open set in X then for any $x \in U$, there exits $\boldsymbol{\vartheta}$ -neighborhood W of f(x) such that $W_{f(x)} \subseteq f(U)$. This implies that $f(U) = \bigcup \{W_{f(x)} : x \in U\}$ is $\boldsymbol{\vartheta}$ -open set. Hence f is M $\boldsymbol{\vartheta}$ -open.

Proposition 4.4: Let $f:(X,\mathfrak{F}) \to (Y,\zeta)$ be a surjective function, then f is M $\boldsymbol{\vartheta}$ -open iff the image of every $\boldsymbol{\vartheta}$ -closed set in X is $\boldsymbol{\vartheta}$ -closed set in Y.

Proof: Obvious.

Proposition 4.5: Let $f:(X,\mathfrak{J})\to (Y,\zeta)$ be a map and β be any base for topological (X,\mathfrak{J}) . Then f is θ -open if and only if f(U) is θ -open set for each $U \in \beta$

Proof: Assume that f is ϑ -open and since $U \in \beta$, then B is an open set in topological space (X, \mathfrak{J}) and so f(U) is ϑ -open set in (Y, ζ) .

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Conversely, let A be an open set, then $A = \bigcup_i U_i$ for $B_i \in \beta$. It follows that $f(A) = f(\bigcup_i U_i) = \bigcup_i f(U_i)$. By hypothesis, $f(B_i)$ is θ -open and by Proposition 3.9, f(A) is θ -open. Hence f is θ -open.

Proposition 4.6: A surjective function $f: X \to Y$ is pre- ϑ -open if and only if $f(G) \setminus f(X \setminus G)$ is an open set in Y whenever A is ϑ -open set in X.

Proof: Suppose that f is pre- $\boldsymbol{\vartheta}$ -open and let G be $\boldsymbol{\vartheta}$ -open set, so f(G) is an open set in Y. Now $f(G) \setminus f(X \setminus G) = f(G) \cap [Y \setminus f(X \setminus G)]$, since $Y \setminus f(X \setminus G)$ is an open set, therefore $f(G) \setminus f(X \setminus G)$ is an open set in Y.

Conversely, suppose that for ϑ -open set A in X, $f(G) \setminus f(X \setminus G)$ is an open set in Y. Let B be an ϑ -open set in X, then $f(B) = Y \setminus f(X \setminus B) \setminus f(B)$ is an open set in Y. Hence f is pre- ϑ -open.

Proposition 4.7: Let $f:(X,\mathfrak{F})\to (Y,\zeta)$ be a function then f is $M\boldsymbol{\vartheta}$ -open if and only if $\mathfrak{F}int_{\vartheta}(f^{-1}(V))\subseteq f^{-1}(\zeta int_{\vartheta}(V))$ for any $V\subseteq Y$.

Proof: Suppose that f is M ϑ -open. Let A be arbitrary subset of Y, then $f^{-1}(V)$ is a subset of X. By theorem 4.3(2), $f\left(\Im int_{\vartheta}(f^{-1}(V))\right) \subseteq \zeta int_{\vartheta}\left(f(f^{-1}(V))\right)$ this implies that $f\left(\Im int_{\vartheta}(f^{-1}(V))\right) \subseteq \zeta int_{\vartheta}(V)$. Therefore, $\Im int_{\vartheta}(f^{-1}(V)) \subseteq f^{-1}(\zeta int_{\vartheta}(V))$ for $V \subseteq Y$.

Conversely, suppose the hypothesis is satisfied and let W be a $\boldsymbol{\vartheta}$ -open set in X, then f(W) is a subset of Y. By hypothesis $\mathfrak{I}int_{\vartheta}\left(f^{-1}\big(f(W)\big)\right)\subseteq f^{-1}\left(\zeta int_{\vartheta}\big(f(W)\big)\right)$ that is $\mathfrak{I}int_{\vartheta}(W)\subseteq f^{-1}\left(\zeta int_{\vartheta}\big(f(W)\big)\right)$. Consequently, $f(W)\subseteq \zeta int_{\vartheta}\big(f(W)\big)$. Therefore f(W) is $\boldsymbol{\vartheta}$ -open. Hence f is M $\boldsymbol{\vartheta}$ -open.

Proposition 4.8: Let $f:(X,\tau) \to (Y,\zeta)$ and $g:(Y,\zeta) \to (Z,\rho)$ be two functions then

1) If f and g are both M θ -open, then $g \circ f: (X, \tau) \to (Z, \rho)$ is also M θ -open

2) If f is pre θ open and g is M θ -open, then $g \circ f: (X, \tau) \to (Z, \rho)$ is pre θ -open

On θ-Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Proof: Straightforward.

Proposition 4.9: Let $f:(X,\tau) \to (Y,\zeta)$ and $g:(Y,\zeta) \to (Z,\gamma)$ be two functions. if f is surjective and continuous function, and $g \circ f:(X,\tau) \to (Z,\gamma)$ is θ -open, then g is θ -open

Proof: Let A be an open subset of (Y, ζ) . Since f is continuous, then $f^{-1}(A)$ is an open set in X. But $g \circ f$ is θ -open, thus $g \circ f(f^{-1}(A)) = g(A)$ is θ -open set. Hence g is θ -open.

Definition 4.10: A map $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named by weakly $\boldsymbol{\vartheta}$ -open if $f(A) \subseteq \zeta int_{\vartheta} (f(\mathfrak{F}cl(A)))$, for every A is an open subset of X.

Definition 4.11: A function $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is named by weakly $\boldsymbol{\vartheta}$ -closed if $\zeta cl_{\vartheta} \left(f(\mathfrak{F}int(B)) \right) \subseteq f(B)$, for every B is a closed subset of X.

It is clear that every weakly open is weakly θ -open.

Theorem 4.12: Let X be locally indiscrete space, then $f:(X,\mathfrak{F})\to (Y,\zeta)$ is weakly $\boldsymbol{\vartheta}$ -open iff it is $\boldsymbol{\vartheta}$ -open.

Proof: Sufficiently, let A be an open set in locally indiscrete space X. Since f is weakly $\boldsymbol{\vartheta}$ -open, then $f(A) \subseteq \zeta int_{\vartheta} \left(f (\mathfrak{I} cl(A)) \right) = \zeta int_{\vartheta} \left(f(A) \right)$ and so f(A) is $\boldsymbol{\vartheta}$ -open set in Y. Hence f is $\boldsymbol{\vartheta}$ -open.

Necessity, let B be an open set in space X. Since f is $\boldsymbol{\vartheta}$ -open, then $f(B) = \zeta int_{\vartheta} \big(f(B) \big) \subseteq \zeta int_{\vartheta} \big(f(\mathfrak{S}cl(B)) \big)$. Hence f is weakly $\boldsymbol{\vartheta}$ -open.

Proposition 4.13: If $f:(X,\mathfrak{I})\to (Y,\zeta)$ is weakly $\boldsymbol{\vartheta}$ -open with strongly continuous, then it is $\boldsymbol{\vartheta}$ -open.

Proof: Assume that A be an open set in space X. Since f is weakly $\boldsymbol{\vartheta}$ -open, then $f(A) \subseteq \zeta int_{\vartheta} \left(f(\mathfrak{I} cl(A)) \right)$ but f is strongly continuous, thus $f(A) \subseteq \zeta int_{\vartheta} \left(f(\mathfrak{I} cl(A)) \right) \subseteq \zeta int_{\vartheta} \left(f(A) \right)$. Therefore f(A) is $\boldsymbol{\vartheta}$ -open set in Y. Hence f is $\boldsymbol{\vartheta}$ -open.

On θ-Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Proposition 4.14: Every contra closed is weakly θ -open.

Proof: Let $f:(X,\mathfrak{F}) \to (Y,\zeta)$ be contra closed and let A be an open set in space X, then $f(A) \subseteq f(\mathfrak{F}cl(A))$. Also, f is contra closed $f(\mathfrak{F}cl(A)) = \mathfrak{F}int(f(\mathfrak{F}cl(A))) \subseteq \zeta int_{\vartheta}(f(\mathfrak{F}cl(A)))$. Hence f is weakly ϑ -open.

Proposition 4.15: A function $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is weakly ϑ -open if and only if for any $x \in X$, and every open set U of X s.t. $x \in U$, there exists a ϑ -open set V in Y containing f(x) such that $V \subseteq f(\mathfrak{F}cl(U))$.

Proof: Sufficiently, let U be an open set in X containing x. Since f is weakly $\boldsymbol{\vartheta}$ -open, then $f(U) \subseteq \zeta int_{\vartheta} \left(f(\Im cl(U)) \right)$. Set $V = \zeta int_{\vartheta} \left(f(\Im cl(U)) \right)$ is a $\boldsymbol{\vartheta}$ -open set in Y containing f(x) such that $V \subseteq f(\Im cl(U))$.

Necessity, let U be an open set in X. Now, for each $x \in U$, there exists $\boldsymbol{\vartheta}$ -open set V in Y containing f(x) such that $V \subseteq f(\Im cl(U))$ and so, $f(U) \subseteq V \subseteq f(\Im cl(U))$ and since V is $\boldsymbol{\vartheta}$ -open set, then $V \subseteq \zeta int_{\vartheta} \left(f(\Im cl(U)) \right)$. Therefore, $f(U) \subseteq \zeta int_{\vartheta} \left(f(\Im cl(U)) \right)$. Hence f is weakly $\boldsymbol{\vartheta}$ -open.

Theorem 4.16: For a function $f:(X,\mathfrak{I}) \to (Y,\zeta)$, the following are equivalents:

- 1) f is weakly θ -open
- 2) $f(\Im int(B)) \subseteq \zeta int_{\vartheta}(f(B))$, for each closed set B of X
- 3) $f(\Im int \Im cl(A)) \subseteq \zeta int_{\vartheta}(f(\Im cl(A)))$, for each open set A of X.

Proof: (1) \Rightarrow (2) let B be closed in X, then $\Im int(B)$ is an open set in X. By (1), $f(\Im int(B)) \subseteq \zeta int_{\vartheta}(f(\Im cl\ \Im int(B)))$ and since B is closed, then it is pre-closed and so $\zeta int_{\vartheta}(f(\Im cl\ \Im int(B))) \subseteq \zeta int_{\vartheta}(f(B))$ that is $f(\Im int(B)) \subseteq \zeta int_{\vartheta}(f(B))$.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

 $(2) \Longrightarrow (3)$ Let A be an open set in X, then cl(A) is closed set in X. By applying (2), we have $f(\Im int \Im cl(A)) \subseteq \zeta int_{\vartheta} (f(\Im cl(A))).$

 $(3) \Longrightarrow (1)$ let U be an open set in X, then U is pre-open and by (3), we get $f(U) \subseteq$ $f(\Im int \Im cl(U)) \subseteq \zeta int_{\vartheta}(f(\Im cl(A)))$. Hence f is weakly ϑ -open.

Proposition 4.17: Let $f:(X,\tau) \to (Y,\zeta)$ be bijective function then f is weakly $\boldsymbol{\vartheta}$ -open if and only if $f(\Im int_{\theta}(B)) \subseteq \zeta int_{\theta}(f(B))$ for any subset B of X

Proof: Sufficiently, let B be subset of a space X and $y \in f(\Im int_{\theta}(B))$, then there exists $x \in$ $\Im int_{\theta}(B)$ and so there exists an open set G such that $x \in G \subseteq \Im cl(G) \subseteq B$ therefore, y = $f(x) \in f(G) \subseteq f(\Im cl(G)) \subseteq f(B)$. Since f is weakly ϑ -open, then $y \in f(G) \subseteq f(G)$ $\zeta int_{\vartheta} (f(\Im cl(G))) \subseteq \zeta int_{\vartheta} (f(B))$. Hence $f(\Im int_{\vartheta}(B)) \subseteq \zeta int_{\vartheta} (f(B))$.

Necessity, let U be an open subset of a space X. Since $U \subseteq \mathfrak{I}int_{\theta}(\mathfrak{I}cl(U))$, then $f(U) \subseteq$ $f(\Im int_{\theta} \Im cl(U)) \subseteq \zeta int_{\theta} (f(\Im cl(U)))$. Hence f is weakly θ -open.

Proposition 4.18: If $f:(X,\mathfrak{F})\to (Y,\zeta)$ is weakly θ -open and strongly continuous, then the image of every open set in X, is e^* -open set in Y.

Proof: Let A be an open set in space X. Since f is weakly θ -open, then $f(A) \subseteq$ $\zeta int_{\vartheta}(f(\Im cl(A)))$ and since f is strongly continuous, then $f(A) \subseteq \zeta int_{\vartheta}(f(\Im cl(A))) \subseteq$ $\zeta int_{\theta}(f(A)) \subseteq \zeta \beta int(f(A))$. Therefore f(A) is e^* -open set in Y.

Proposition 4.19: If $f:(X,\mathfrak{F})\to (Y,\zeta)$ is almost open and closed, then it is weakly θ -open.

Proof: Let A be an open set in space X. Since f is almost open, then $f(A) \subseteq$ $\zeta int \zeta cl(f(A))$ and since f is closed, then $f(A) \subseteq \zeta int \zeta cl(f(A)) \subseteq \zeta int(f(\Im cl(A))) \subseteq \zeta int(f(\Im cl(A)))$ $\zeta int_{\vartheta}(f(\Im cl(A)))$. Hence f is weakly ϑ -open.

P-ISSN: 2222-8373 Vol: 15 No:1, January 2019 131 E-ISSN: 2518-9255

DOI: http://dx.doi.org/10.24237/djps.1501.487B

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

ϑD -set

Definition 5.1: A subset A of topological space (X, \mathfrak{F}) is named $\boldsymbol{\vartheta D}$ -set if there exist two $\boldsymbol{\vartheta}$ -open sets U and V such that $U \neq X$ and A = U - V.

Proposition 5.2: Every proper θ -open set is θD -set.

Proof: Let W be proper subset of topological space (X,\mathfrak{F}) and since $W=W-\phi$, then W is ∂D -set.

However, the converse is not true in general as showing in the next example.

Example 5.3: Consider $X = \{a, b, c, d\}$ with the topology $\mathfrak{F} = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$, then $G = \{a, c\}$ is $\boldsymbol{\vartheta} \boldsymbol{D}$ -set but it is not $\boldsymbol{\vartheta}$ -open set.

Definition 5.4: A topological space (X, \mathfrak{I}) is named

- 1) ∂T_0 —space if for each two distinct points a and b of X, there is a ∂ -open W containing a but not b or containing b but not a.
- 2) ϑT_1 —space if for each two distinct points a and b of X, there are ϑ -open sets U and V s.t. $a \in U, b \notin U, b \in V$, and $a \notin V$.
- 3) ϑT_2 —space if for each two distinct points a and b of X, there are ϑ -open sets U and V s.t. $a \in U, b \in V$ and $U \cap V = \phi$.

Definition 5.5: A topological space (X, \mathfrak{F}) is named to be

- 1) ∂D_0 —space if for each two different points a and b of X, there is a ∂D -open containing a but not b or containing b but not a.
- 2) ϑD_1 —space if for each two different points a and b of X, there are ϑD -open sets U and W s.t. $a \in U, b \notin U, b \in W$, and $a \notin W$.
- 3) ∂D_2 —space if for each two different points a and b of X, there is ∂D -open sets U and W s.t. $a \in U$, $b \in W$ and $U \cap W = \phi$.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Remark 5.6:

1) Every θT_i -space is θT_{i-1} -space. For i=1,2

2) Every θD_i -space is θD_{i-1} -space. For i=1,2

Proposition 5.7: Every ∂D_1 -space is ∂T_0 -space.

Proof: Let a and b are two distinct points in ∂D_1 —space (X, \mathfrak{F}) , then there exist two ∂D - sets U and V such that $a \in U = K - L$, $b \notin U = K - L$, $b \in V = M - N$, $a \notin V = M - N$, and $K, M \neq X$. When $a \notin V$, there are two options

1) $a \notin M$, and since $b \in V$, then $b \in M$, Mis ϑ -open set

2) $a \in M$ and $a \in N$. But $b \in V = M - N$, thus $b \notin N$, N is θ -open set. Hence (X, \mathfrak{F}) is θT_0 -space.

Proposition 5.8: Every ∂T_i -space is ∂D_i -space for i = 0,1,2.

Proof: when i=1, let a and b be two different points in ∂T_1 —space (X,τ) , then there exist two ∂ -open sets G and H such that $a \in G$, $b \notin G$, $b \in H$, and $a \notin H$. It follows that $a \in G - H$, $b \notin G - H$, $b \in H - G$, and $a \notin H - G$ where $G, H \neq X$. Hence (X,τ) is ∂D_1 —space.

Proposition 5.9: Let (X,\mathfrak{F}) be a topological space then the following are equivalents:

- 1) X is ϑD_2 -space.
- 2) X is ϑD_1 -space.

Proof: $1 \Rightarrow 2$ By Remark 5.6

2⇒1 Let a and b be two different points in ∂D_1 —space X, then there exist two ∂D -sets U and V such that $a \in U = G_1 - G_2$, $b \notin U = G_1 - G_2$, $b \in V = G_3 - G_4$, $a \notin V = G_3 - G_4$. For $b \notin U = G_1 - G_2$, we have two issues. issue1: if $b \notin G_1$, and $b \in G_3 - G_4$, then $b \in G_3 - (G_1 \cup G_4)$. Also, $a \in G_1 - G_2$ and since $a \notin G_3$, then $a \in G_1 - (G_2 \cup G_3)$ with $[G_3 - (G_1 \cup G_4)] \cap [G_1 - (G_2 \cup G_3)] = \phi$.

On ϑ -Open Set and Some of its Applications Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

If $a \in G_3$ and $a \in G_4$ and since $b \in G_3 - G_4$, then $G_4 \cap (G_3 - G_4) = \phi$

issue2: $b \in G_1$ and $b \in G_2$ and since $a \in G_1$, then $G_1 \cap (G_2 - G_1) = \phi$

Definition 5.10: A topological space (X,\mathfrak{F}) is said to be $\boldsymbol{\vartheta}$ -symmetric, if for every $a,b\in X$, $a\in \mathfrak{F}cl_{\vartheta}(\{b\})$ implies that $b\in \mathfrak{F}cl_{\vartheta}(\{a\})$.

Proposition 5.11: For ϑ -symmetric space (X, \mathfrak{I}) , then the following are valent:

1) X is
$$\vartheta T_0$$
 -space 2) X is ϑT_1 -space 3) X is ϑD_1 -space

Proof: (1) \Rightarrow (2) let a and b are two distinct points in ∂T_0 —space X, then there exists ∂ -open set U such that $a \in U \subseteq X - \{b\}$. It follows $a \notin \mathfrak{T}cl_{\vartheta}(\{b\})$ and since X is ∂ -symmetric space, then $b \notin \mathfrak{T}cl_{\vartheta}(\{a\})$ and so $b \in X - \mathfrak{T}cl_{\vartheta}(\{a\})$.

- $(2) \Rightarrow (3)$ By Remark 5.6
- $(3) \Longrightarrow (1)$ By Proposition 5.7

Proposition 5.12: Let $f:(X,\tau) \to (Y,\zeta)$ be one to one and onto function. If A is ∂D -set in X, then f(A) is also ∂D -set in Y.

Proof: Straightforward.

Theorem 5.13: if $f:(X,\mathfrak{F}) \to (Y,\zeta)$ is one to one, onto, and M $\boldsymbol{\vartheta}$ -open function and (X,\mathfrak{F}) is $\boldsymbol{\vartheta}T_i$ -space, then (Y,ζ) is $\boldsymbol{\vartheta}D_i$ -space (i=0,1,2).

Proof: We will prove when i = 1, and similarly for others

Let y_1 and y_2 are two different points in ∂T_1 —space, then there exists x_1 and x_2 such that $x_1 = f^{-1}(y_1)$ and $x_2 = f^{-1}(y_2)$. But X is ∂T_1 —space, therefore there exist two ∂ -open sets U and V such that $x_1 \in U$, $x_2 \notin U$, $x_2 \in V$, and $x_1 \notin V$. By Proposition 5.2 and since f is M ∂ -open, then f(U) and f(V) are ∂D -sets such that $y_1 \in f(U)$, $y_2 \notin f(U)$, $y_2 \in f(V)$ and $y_1 \notin f(V)$. Hence Y is ∂D_1 —space.

DIPS DIVALA ENVERSITY COLLEGE SE

On ϑ -Open Set and Some of its Applications

Jamil Mahmoud Jamil and Intisar Elaiwi Ubaid

Proposition 5.14: let f be one to one and M θ -open from (X, \mathfrak{F}) onto θ -symmetric space (Y, ζ) . If (X, \mathfrak{F}) is θT_0 —space, then (Y, ζ) is θD_1 —space.

Proof: By Theorem 5.13, and Proposition 5.11.

References

- **1.** Levine N. American Math. Monthly 1963, 70(1), 36-41.
- 2. Velico N.K., American. Math. Soc. Trans. 1968, 78(2), 103-118.
- **3.** Ekici E. Mathematica Moravica 2009, 13(1), 29-36.
- **4.** EL-Magharabi, A. I.; Mubarki, A.M. International Journal of Mathematical Archive EISSN 2011, 2(10), 1819-1827.
- 5. Mubarki, A. M., Al-Rshudi, M. M. and Al-Juhani, M. A. Journal of Taibah University for science 2014, 8, 142-148.
- 6. Rose, D. A.; Janković, D.S. Mathematische Nachrichten 1987, 130(1),105-110
- 7. Janković, D. Acta Mathematica Hungarica 1985, 46(1-2), 83-92
- 8. El-Deeb S. N.; Mashhour A. S.; Abd El-Monsef M.E *Proc. Math. Phys. Soc.* Egypt 1982, 53, 47-53.
- **9.** Njastad O. *Pacific J. Math.*,1965, 15(3), 961-970.
- 10. Abd El-Monsef M. E.; El-Deeb S.N.; Mahmoud R.A. Bull. Fac. Sci. Assuit. Univ.1983, (21)1,1-18.
- **11.** Rose D.A. International Journal of Mathematics and Mathematical Sciences 1984, 7(1), 35-40.
- 12. Andrijevic, D. Matema. Bech. Vesnisk1996, 48, 59-64.
- **13.** Dontchev J., Survey on pre-open sets, The Proceedings of the yatsushiro topological conference 1998, 1-18.
- **14.** Di Maio G.; Noiri T. Indian J. Pure Appl. Math. 1985, 18(3), 226-233.
- **15.** Guo T. Y. J. Central China Normal Univ. Nature Sci. 1981, 21(2), 169-170.
- **16.** Baker, C. W. Math. Today. (Ahmed-abad), 1997,15, 19-24.
- 17. Levine N. American. Math. Monthly1960, 67, 269.