On Semi-Pre irresolute Topological Vector Space Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

On Semi - Pre irresolute Topological Vector Space

Radhi I. M. Ali¹, Jalal H. Hussein² and Suhad K. Hameed³

Department of Mathematics - College of Science for Woman - Baghdad University

³a197915197915@gmail.com

Received: 15 October 2017 Accepted: 31 January 2018

Abstract

In this work some properties of semi-pre irresolute topological vector space was introduced, also several characterizations of semi-pre Hausdorff are given. Moreover, we show that the extreme point of convex subset of semi-pre irresolute topological space X lies on the boundary.

Keywords: Topological Vector space, Semi-preirresolute Topological Vector Space, SemipreHausdorff Space, and Extremely points.

> ألفضاءات التبولوجيه المتجهه الشبه مترددة راضی ابراهیم محمد علی، جلال حاتم حسین البیاتی و سهاد کریم حمید

> > قسم الرياضيات - كليه العلوم للبنات - جامعه بغداد

ألخلاصة

في هذا البحث تم تعريف الفضاءات التبولوجيه المتجهه الشبه مترددة و دراسة خصائصها وأعطاء تمثيل للفضاءات الشبه هاوز دور ف (semi-pre Hausdorff) . أضافة الى ذلك تم اثبات ان القيم القصوى للمجموعات الجزئيه المحدبه تكون حدو ديه بالنسبه للفضاءات التبولو جيه المتجهه الشبه متر ددة .

الكلمات المفتاحيه: الفضاءات التبولوجيه المتجهه، الفضاءات التبولوجيه المتجهه الشبه مترددة، الفضاءات شبه هاوزدورف، القيم القصوى.

P-ISSN: 2222-8373 Vol: 14 No: 3, July 2018 183 E-ISSN: 2518-9255 DOI: http://dx.doi.org/10.24237/djps.1403.433C

On Semi-Pre irresolute Topological Vector Space Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

Introduction and Preliminaries

This study discussed the notion of semi-pre irresolute topological of vector space that is one of generalization of a topological of vector space. Many researches have been done in this field see [1, 2, 3]. We considered it in terms of semi-preopen set, on the sense of Andrijevi'c [4]. A subset A of a topological space X is called semi-preopen (sp - open) if $A \subset Cl$ (Int (Cl(A))) [4], while a complement for sp-open set is named by semi-preclosed (sp - closed). The semipreclosure of A that subset of X is represented by $Cl_{sp}(A)$ which is intersection for all sp-closed subsets on X containing A [5]. Recall that the subset $U \subset X$ is called semi-preopen neighborhood for x if there is sp-open set A with x belong to the set $A \subset U$ [5]. The point x for a subset A is said to be semi-preinterior point on A which denoted by $Int_{sp}(A)$ [5] if there is sp-open subset $U, x \in U$, and $U \subseteq A$, and we used sp-irresolute continuous mapping. A mapping $f: X \to Y$ is named semi-pre irresolute continuous if an inverse image for each sp-open subset in Y is spopen on X where X and Y is topological spaces [6]. Also, a mapping $f:X \to Y$ is called spirresolute continuous at point x on X if for all sp-open subset V on Y contained f(x), there is spopen subset U with $x \in U$ satisfy f(U) is subset of V [6]. A function f from a topological space X to Y is named pre sp-open function if the image for each sp-open subset of X is sp-open set in Y. Moreover the notion of sp-homeomorphism [6] that is a mapping f from X to Y is called sp-homeomorphism if it's bijective, both f and f^{-1} are sp-irresolute.

1. Semi-pre irresolute Topological Vector Space (SPITVS).

Definition 1.1: A topology τ with a vector space X over a field F is called SPITVS whenever these conditions are satisfied:

- (a) The vector addition map $S: X \times X \rightarrow X$
- (b) The multiplication by scalar map $M:F \times X \rightarrow X$

are both sp-irresolute. Observe that for all x belong to X, the translation mapping T_x $:X \rightarrow X$ defined by $T_x(y) = y + x$ also the multiplication mapping $M_{\lambda}: X \rightarrow X$ defined by $M_{\lambda}(x) = \lambda . x.$

P-ISSN: 2222-8373 Vol: 14 No: 3, July 2018 184 E-ISSN: 2518-9255 DOI: http://dx.doi.org/10.24237/djps.1403.433C

DIPS DIVALA UNIVERSITY EN

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

Remark: We denoted to the collection of sp-neighborhoods for $x \in X$, by N_x . As well as the set of all sp-neighborhoods of zero vector space 0 of X denoted by N_0 .

Lemma 1.2[6]: Let A is a sp-open subset of a topological space X, B is any open subset of X, then the set $A \cap B$ is sp-open set.

Lemma 1.3[6]: Let $f:X \to Y$ (X and Y are topological spaces) is sp-irresolute mapping, so for sp-neighborhood V for f(x), there—sp-neighborhood U of x satisfied— $f(U) \subseteq V$.

Theorem 1.4: Let *X* is a SPITVS, then the following hold.

- a. If $U \in N_x$, and V is a neighborhood for x in X, then $U \cap V \in N_x$.
- b. If $U \in N_0$, then $\lambda U \in N_0$ for a non-zero element $\lambda \in R$.
- c. If $U \in N_0$, then $x + U \in N_x$

Proof: a) If U is sp-neighborhood of x, and V is a neighborhood for x, then there is a sp-open subset A and an open set B with $x \in A \subset U$ and x belong to $B \subset V$. Then x belong to $A \cap B \subseteq U \cap V$ and by Lemma 1.2, $A \cap B$ is sp-open. So $A \cap B$ is a sp-neighborhood for x. To prove (b) and(c) suppose U is sp-neighborhood for zero since S:(x, y) is sp-irresolute, we can define the map $T_x: X \to X$ by $T_x(y) = y + x$. Therefore $T_x(y) = S_x(x, y)$, $T_x(y)$ is sp-irresolute also $T^{-1}_x(y) = S_x(x, y)$ is also sp-irresolute(since the addition is sp-irresolute), therefore T_x is sp-homeomorphism, by lemma 1.3 for a sp-neighborhood U for zero, there sp-neighborhood U + x for a point x.

Definition 1.5[7]: The subset A on the vector spaces X named balanced if $\lambda A \subseteq A$ for $|\lambda| \le 1$ and absorbing if every x belong to X, there is $\varepsilon > 0$ such that $\lambda x \in A$ for $|\lambda| \le \varepsilon$. It is named absolutely convex if the subset both balanced and convex.

Theorem 1.6: Let X be an SPITVS, then

- (a) Every sp-neighborhood U of θ is absorbing.
- (b) For sp-neighborhood U for zero there balanced $V \in N_0$ satisfy that $V \subseteq U$.

Proof: (a) Suppose U sp-neighborhood for zero, therefore there is sp-open subset $U_1 \in N_0(X)$ with $U_1 \subset U$, we have the scalar multiplication map M_{λ} is sp-irresolute, so there exist sp-

Vol: 14 No: 3, July 2018

DOI: http://dx.doi.org/10.24237/djps.1403.433C

P-ISSN: 2222-8373
E-ISSN: 2518-9255

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

neighborhood of 0 V_1 , V_2 satisfying $M_{\lambda}(V_1 \times V_2) \subset U_1$. The set V_1 contains an open interval of the form $(-\varepsilon, \varepsilon)$, therefore $tx \in U_1$ for all $t \in (-\varepsilon, \varepsilon)$ and for all $x \in V_2$. That implies U_1 is absorbing.

(b). Since the multiplication map $M_{\lambda}: R \times X \rightarrow X$ is sp-irresolute therefore for every spneighborhood U for zero in X, there is sp-neighborhood for 0 with $M_{\lambda}(V) \subseteq U$, so there exists $\varepsilon > 0$ with $V = V_1 \times V_2$, $(-\varepsilon, \varepsilon) \subseteq V_1$, V_1 is a sp-neighborhood for 0 on R, V_2 is sp-neighborhood for 0 in X. Define $W = U_{1t} \bowtie t V_2$ and tV_2 is sp-neighborhood for 0 from theorem 1.4, for $t \neq 0$ and $tV_2 \subseteq U$ for $t < \varepsilon$. Now we have to show that W is balanced. If r < 1, then $rW = U_{1t} < \varepsilon(rt)$ V_2 and $|rt| < \varepsilon / r | < \varepsilon$, it follows that $rW = U_{|s| < \varepsilon} sV_2 \subseteq W$, where s = rt, hence W is balanced.

Theorem 1.7: Let X be an SPITVS. If $A \subseteq X$, so $Cl_{sp}(A) = \cap (A+U)$. In particular $Cl_{sp}(A) \subseteq A$ A+U for all U belongs to N_0 .

Proof: Assume $x \in Cl_{sp}(A)$, and let U is a sp-neighborhood of 0 then by theorem 1.6(b) there balanced neighborhood V for zero with $V \subseteq U$, so x+V sp-neighborhood for x and $x \in Cl_{sp}(A)$, there $(x+V)\cap A \neq \emptyset$, that implies $x \in A-V$. Since V is balanced, A-V equal to A+V, then $x \in A+V$ V subset of A + U, hence $Cl_{sp}(A) \subseteq \cap (A + U)$. Conversely if $x \notin Cl_{sp}(A)$, so there balanced neighborhood U for zero satisfy that $(x+U)\cap A=\emptyset$, so that $x\notin A-U=A+U$.

Theorem1.8: Let *X* be an SPITVS. Then

- (a) Every U belong to N_0 , there V belong to N_0 satisfy $V + V \subseteq U$.
- (b) For every $U \in N_0$, there is a sp-closed balanced $V \in N_0$ satisfy that $V \subseteq U$.

Proof: (a) Assume $U \in N_0(X)$, since the addition map $S: X \times X \to X$ is sp-irresolute, then there are sp-neighborhood for $0 V_1$ and V_2 satisfy $S(V_1, V_2) \subseteq U$, that mean $V_1 + V_2 \subseteq U$, set $V = V_1 \cap V_2$ that show $V+V \subset V_1+V_2 \subset U$.

(b) Let U sp-neighborhood of zero on X, by part (a) there is sp-neighborhood V for zero with $V+V \subseteq U$. By Part (b) of Theorem 1.6, there neighborhood W for 0 which is balanced with

P-ISSN: 2222-8373 Vol: 14 No: 3, July 2018 186 E-ISSN: 2518-9255

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

 $W \subset V$. By Theorem 1.7 $Cl_{sp}(W) \subset W + V$ and $Cl_{sp}(W) \subset W + V \subset V + V \subset U$. This shows that Ucontains the sp-closed neighborhood.

Definition 1.9: A topological space X called sp-Hausdorff, if each two distinct points x and y in X, there exist disjoint sp-open sets U, V such that $x \in U$, and $y \in V$.

Now we give some properties of sp-Hausdorff space.

Theorem 1.10 :Let X be an SPITVS. The statements are equivalently.

- (a) X sp- Hausdorff.
- (b) Let x belong to X therefore U_0 satisfy $x \notin U_0$.

Proof: (a) \Rightarrow (b) Assume x be a non-zero vector belong to X. Then there are disjoint spneighborhoods U for 0, and V for x, where U belong to N_0 , V belong to N_x and $x \notin U$.

(b) - a) let x, y belong to X with x not equal to y. Therefore there exists a sp-neighborhood U_0 for 0 with $x-y \notin U_0$. By part (a) of Theorem 1.8, there exists sp-neighborhood W of 0 satisfy $W+W\subseteq U_0$ In part (b) of Theorem 1.6 W is balanced, let $V_1=x+W$ and $V_2=y+W$, therefore V_1 , V_2 is an sp-neighborhood of x, y respectively. To prove that $V_1 \cap V_2 = \emptyset$, let $s \in V_1 \cap V_2$ then $-(s-x) \in W$, since W is balanced and $s-y \in W$. Which implies that x-y $= (s - y) + (-(s - x)) \in W + W \subseteq U_0$ which is a contradiction. So we have $V_1 \cap V_2 = \phi$. Finally, the space X is sp- Hausdorff.

Corollary 1.11: Let X be an SPITVS. Then these statements are equivalently

- (a) Let *X* sp- Hausdorff.
- (b) $\cap \{U : U \in N_0\} = \{0\}.$
- (c) $\cap \{U : U \in N_x\} = \{x\}$

P-ISSN: 2222-8373 Vol: 14 No: 3, July 2018 187 E-ISSN: 2518-9255

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

I. Theorem 1.12:A SITVS X is sp-Hausdorff if iff one-point subset is sp-closed in X.

Proof: Let $x \in X$ and y belong to $X/\{x\}$, then x not equal to y that mean $x \cdot y \neq 0$, therefore there an sp-neighborhood U for zero satisfy $y - x \notin U$. Then there is sp-closed, balanced W of 0 with $W \subseteq U$ by theorem 1.8,b. Which implies that $y - x \notin W$ then $y - x \in X - W$. Therefore y belong to $(X - W) + \{x\}$, also $(X \cdot W) + \{x\}$ is sp-open, W is sp-closed, $(X - W) + \{x\}$ contained on $(X - \{x\})$. That shows $X/\{x\}$ is sp-open, thus $\{x\}$ is sp-closed. Converse, let x belong to X and assume the singleton $\{x\}$ is sp-closed. Therefore by Theorem 1.7 $\{x\} = Cl_{sp}\{x\} = \bigcap \{U + \{x\}: U \text{ is sp-neighborhood for zero}\} = \{W: W \text{ is sp-neighborhood of } x\}$ where $W = U + \{x\}$. Thus by Corollary 1.11, X is sp- Hausdorff.

Definition 1.13:A topological space X is called sp-compact if for any cover for X by sp-open subsets have a finites subcover.

Theorem 1.14:Let C, K be subsets in a SPITVS X, and $C \cap K = \emptyset$, with C sp-closed, K sp-compact. Therefore there sp-neighborhood U for 0 satisfy $(K + U) \cap (C + U) = \emptyset$.

Proof: If $K = \phi$, then the proof is trivial. Otherwise, let $x \in K$, and x = 0. Then X - C is an sp-open set of 0. Since the addition mapping is sp-irresolute and sp-continuous, and 0=0+0+0 , therefore there an spneighborhood U for zero satisfy $3U = U + U + U \subset X - C$. Define $\tilde{U}=U\cap (-U)$ which is sp-open , symmetric and $3\tilde{U} = \tilde{U} + \tilde{U} + \tilde{U} \subset X - C$. Which is implies that $\emptyset = \{x + x + x, x \in \tilde{U}\} \cap C = \{x + x, x \in \tilde{U}\}$ intersected $\{y-x, x \in \tilde{U}, y \in C\}$ and $\tilde{U} \cap \{C+\tilde{U}\} \subset \{2x, x \in \tilde{U}\} \cap \{y-x, x \in \tilde{U}, y \in C\}$. This is for one point. Now since K is sp-compact, then by the above argument for every $x \in K$, we have a symmetric sp-neighborhood V_x such that $(x+2V_x)\cap (C+V_x)=\phi$. The sets $\{V_x:x\in K\}$ are a sp-open that covers K, and since K is sp-compact subset therefore for finitely number for points $x_i \in K$, i = 1,...,n, we have $K \subset \sum_{i=1}^n (x_i + V_{x_i})$. Define the sp-neighborhood V of 0 by $V = \bigcap_{i=1}^{n} V x_i$ Therefore (K+V) intersected $(C+V) \subset \bigcup_{i=1} n (x_i + V x_i + V) \cap (C+V) \subset \bigcup_{i=1} n (x_i + V x_i + V)$ $2 Vx_i \cap (C + Vx_i) = \emptyset$. That is complete the proof.

Vol: 14 No: 3, July 2018

DOI: http://dx.doi.org/10.24237/djps.1403.433C

P-ISSN: 2222-8373
E-ISSN: 2518-9255

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

Lemma 1.15: Let U be sp-open subset of a SPITVS X, and A any subset such that $U \cap A = \emptyset$, then $U \cap Cl_{sp}(A) = \emptyset$.

Proof: Let $x \in U \cap Cl_{sp}(A)$. Thus $x \in Cl_{sp}(A)$, U sp-neighborhood for x, since U is sp-open subset, then X - U sp-closed subset contain A, and so $Cl_{sp}(A) \subseteq X - U$ and $x \notin Cl_{sp}(A)$ which implies a contradiction, therefore $U \cap Cl_{sp}(A) = \emptyset$.

Corollary 1.16: Let C, K be disjoint sets in a SPITVS X with C sp-closed, K sp-compact. Therefore there sp-neighborhood U for zero satisfy $Cl_{sp}(K+U)\cap (C+U)=\emptyset$.

Proof: In theorem 1.14 we have for any disjoint sp-closed C set and sp-compact set K, so there sp-neighborhood U for 0 satisfy $(K+U) \cap (C+U) = \emptyset$. The set $C+U = \{y+U: y \in C\}$ is an sp-open set, then by lemma 1.15 $\operatorname{Cl}_{\operatorname{sp}}(K+U) \cap (C+U) = \emptyset$.

Definition 1.17: Let X be a vector space with field F, an algebra dual for X is the collection of linear functional which define in X and represented by X^* .

Theorem 1.18: Let X be an SPITVS and $0 \neq f \in X^*$, then f(E) is sp-open in F whenever E is sp-open in X.

Proof: Let E be non-empty subset of X, and $0 \neq x_0 \in X$ with $f(x_0) = 1$. then for any point $a \in E$, we have to prove that $f(a) \in \operatorname{Int}_{\operatorname{sp}}(f(E))$. E is sp-open neighborhood for a then by Theorem 1.4 we have E - a is sp-neighborhood of 0. By Theorem 1.6 E - a is absorbing, then there exists $\epsilon > 0$, such that $\lambda x_0 \in E - a$ for $\lambda \in R$ with $|\lambda| \leq \epsilon$. Therefore for any $\beta \in R$ with $|\beta - f(a)| \leq \epsilon$ we have $(\beta - f(a))x_0 \in E - a$, therefore $f((\beta - f(a)x_0) \in f(E - a) \longrightarrow (\beta - f(a)) f(x_0) \in f(E - a) \longrightarrow (\beta - f(a)) (1) \in f(E - a) = f(E) - f(a)$ which implies $\beta \in f(E)$, $f(a) \in [\beta - \epsilon, \beta + \epsilon]$, so that $f(a) \in \operatorname{Int}(f(E)) \subseteq \operatorname{Int}_{\operatorname{sp}}(f(E))$, therefore $f(E) = \operatorname{Int}_{\operatorname{sp}}(f(E))$.

Lemma 1.19: [7] Let X be a vector space, $\emptyset \neq A \subset X$. For $x \in A$

The following statements are equivalents.

1) x is extremely point on A

Vol: 14 No: 3, July 2018

DOI: http://dx.doi.org/10.24237/djps.1403.433C

P-ISSN: 2222-8373
E-ISSN: 2518-9255

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

2) if $a, b \in A$ such that $x = \frac{1}{2}(a+b)$, then x equal to a equal to b.

3) let $a,b \in A$, with $a \ne b$, let $\lambda \in (0,1)$, $x = \lambda a + (1-\lambda)b$. Then we have either $\lambda = 0$, or $\lambda = 1$ An extremely point for subset V which is convex in a vector X is the point $x \in V$ which is not interior point on a segment $U \subset V$.

Theorem 1.20: Let *X* be SPITVS, $K \subset X$ be convex. Therefore $Int_{sp}(K) \cap (\delta K) = \emptyset$.

Proof: If $Int_{sp}(K) = \emptyset$, the proof is trivial. Suppose that the $Int_{sp}(K) \neq \emptyset$ and let $x \in Int_{sp}(K)$. Therefore there is sp-neighborhood U for 0 satisfy $x+U \subset K$. As a mapping $\varphi: \Re \to X$ where $\varphi(\mu) = \mu x$ continuous at $\mu = 1$, for this the sp-neighborhood x+U, there is an s>0 such that $\mu x \in x+U$ whenever $|\mu-1| \leq s$. In particular, we have (1+s) $x \in x+U \subset K$ and $(1-s)x \in x+U \subset K$. Now consider $x=\lambda(1+s)x+(1-\lambda)(1-s)x$ and take $\lambda=\frac{1}{2}$. So that $x=\frac{1}{2}(1+s)$ $x+(1-\frac{1}{2})(1-s)$ x, which implies the point x is not extremely on K.

Conclusion

Throughout our work we give some main results. Which are the semi-pre topological vector space satisfies that any neighbourhood for 0 containing a neighborhood for 0 which is balanced, semi-pre topological vector space satisfies the separation axiom (semi-pre hausdorff) and in a semi-pre topological vector space the semi-preinterior of a convex set doesn't intersect with the boundary of the set .

Vol: 14 No: 3, July 2018 P-ISSN: 2222-8373 DOI: http://dx.doi.org/10.24237/djps.1403.433C E-ISSN: 2518-9255

DIPS DIYALA UNIVERS OMIGGUE

On Semi-Pre irresolute Topological Vector Space

Radhi I. M. Ali, Jalal H. Hussein. Bayati and Suhad K. Hameed

References

- **1.** Al-Hawary, T. and Al-Nayef, A., Irresolute-Topological Vector Spaces, Al-Manarah 19(2), 119-126, 2003.
- **2.** Moiz ud Din Khan, S. Azam and M. S. Bosan, s-Topological Vector Spaces, Journal of Linear and Topological Algebra, Vol.04, No.02, 2015,153-158.
- **3.** Moiz ud Din Khan, Muhammad Asad Iqbal, On Irresolute Topological Vector Spaces, Adv. Pure Math.6(2016), 105-112
- 4. D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), No. 1, 24-32.
- **5.** G.B. Navalagi, Semi-preneighborhoods and generalized semi-preregular closed sets in topological spaces, Topology Atlas Preprint #455.
- **6.** G.B. Navalagi, Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces, IJMMS (2002) 85-98.
- 7. Horvath, J. Topological Vector Spaces and Distributions, Addison and Wesley publishing comp., London, 1966.

Vol: 14 No: 3, July 2018 P-ISSN: 2222-8373 DOI: http://dx.doi.org/10.24237/djps.1403.433C E-ISSN: 2518-9255