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Abstract
In this paper, we introduce a new norm and modulus in weighted spaces (L, g(X)) of order k.
Via these modulus, we prove the direct and inverse spline approximation inequalities of
unbounded functions in weighted spaces (Lp,g(X)) ; 0 < p < 1 which is the main results of
our paper.
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Introduction

Direct and inverse theorems which establish a relationship between the degree of best
approximation of unbounded functions in weighted space with respect to spline polynomials
and modulus of continuity of order k. In 1998 Radzievakii and Zeng studied direct and
inverse theorems [1, 2], using the notation of a k-functional has two-sided estimates with
regard to the modulus of continuity at least for bounded C, —groups. The purpose of this
article is developing a theory of direct and converse theorems for spline approximation in
weighted space (L, (X)), 0 < p < 1. This result were proved by Gorbachuk and Grushk [3,
4] and extended by Kochurov and Zoha [5, 6]. However the present article deals with a rather
different setting which somehow related to the direct and inverse inequalities see [7]. Let X =
[0,1] be the periodic unit interval and 0 < p < 1 and W be the set of all weight functions.
Then as usual, the weighted space L, z(X) is the quasi-norm of all unbounded functions

which the following norm:

115 = Ul fCOBGOIPdR)? < oo ()
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Where B:X —» R* the weight function on X such that,|f(x)B(x)| < M; M is positive real
number.

Let us recall some definitions of modulus of order k which are used through this article. The

kth symmetric difference of f is given by:

A PO ={ K (—1)kt (’l‘) Foc+ih) L if xx+ih EX} @

0 otherwise

Where k =1,2,3,....

Then the kth modulus of continuity of f € Ly, 5(X) is defined by:

wr(fMpp = sup [[ALfOl, - 0<n<1 . 3)
0<h<n

Also, the kth modulus of continuity of,g € L,3(X) , 0 <p <1 which satisfies the

following properties:

wk(f + 9, 77)5,3 £ wk(f: Tl)z,g + (Uk(g, Tl)z,g (4)
Ok(f,Epp < COY 7 Wr(fimlppn <E&C >0 - (9)
0 (fsmps < € wa (FiMps < Cllf Nl . (6)

Letn=1.2,..... the partitions of X is y setting

M, = {0 =jon <jin <Jon < < jn-1a < 1}, are defining by:

— 270 5i=01,..2)
T l1=-2t(n=0); i=2j,.,n—1

For n=2"'+j>1wherej=12,..,2" and [ = 0,1,2, ... are a unique determined by n.

Furthermore, we set:
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Bin+in = in » 8 in+in = Sin T [,1=0+1,...

For k = 0,1,2, ... we denoted by S,(lk) (X) the n-dimensional subspace of C**=Y(X) (of L (X)

iIf k = 0) consisting of all periodic spline functions of order k with respect to I1,,

The corresponding B-splines

K o k K g ' ' g
Si(,n) (x) =X Sl(nlm(x), where, 51(,n) (x) = (5 l+k+1n — 8 l,n)[5 L s 8 L1 (8 —

x)*], x € (—o0, ), have the following properties

k
suppSy) () = [8im Simricra] ()
YasPm =1, SPw =0 vxeXx .. (8)
) AV i« hasic in <00
{S (x)} Form an algebraic basic in S, (x) ... 9
=0
(k) (k)
i (k) _ Si,n x) _ Si,n (x)
dx Si,n (x) =k {5'i+k,n_/5,i,n 8 irkein—3 in I (10)

Ifp(x) € S (X) & () = X a; S (%) ... (12)

Then 1< p <o CEIZEn P < [l p < €' P)EI n Yo
Where C(p) and C*(p) are constant independent of y(x) & n.

If n= 2/, then:

SEI(x) = S0 (x — i 27) . (12)

Our interesting is about approximation of unbounded functions in weighted space L, z(X) by

spline polynomial belong to, ST(Lk)(X). For f € L, g(X) , let

L (Nps = inf{If = Sallpg , Sn € 57} - (13)
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be the degree of best spline approximation of unbounded functions in L, z(X) have the

following properties:

EXU+Dps < E° Plps + €3 (@Dp . (14)
ELENpp < 1E1E° (Mg ... (15)
EPPpp <L Phpp ... (16)
EX +Spp < E00 (g .. (17)

For,, g € Ly 5(X), Sp € ST and ¢ scalor.
Auxiliary lemmas
Lemma 1 [8]

Letk =123, ... , 8=0,12, ... and n =2/ > s+ k + 1 be given. Then for every spline

Px) =Yyt aiS,(lk) € S,Sk) (X) , there exist a step function
#C0) € 89 (x), such that

() — #(0) = Xi5 As(x) .. (18)

Where the function Ag(x) ,s = 0,1, ...,n — 1 satisfy

supp As(x) € [8n5, Snsrs41) = Ins - (19)
14sllee < C XiZs—ilAa] ... (20)
Where agy;p = a;fori =0,1,..,n—1,s=0,+1,+
and
Jip Asc(x + 8p5) x9dx =0, =0,1,..,s ... (21
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The positive constant C in eq. (20) is independent of n & ¥ (x).
Lemma 2

Ifk°=0,12,...,k>k’,0<p<1landn =2/ >k+1,then forany (x) € cS}(l")(X), there

exist a spline (x) € S,(lkc) (X) satisfying

N5 < Cor @D .. (22)

Proof:

Let Y(x) = ¥4 a;S;(x) be the B-spline with respect to, ¥ (x).

From eq. (10) we have, 1 *)(x) = w(x) = nk YLAR g, S®K)(x), where

stk g s oy,

By lemma (1) there is 1/)1(k°)(x) such that, Y ®) (x) — l/)l(ko)(x) = Y1 A, (x), where A4(x)
satisfies eq. (19), (20) and eq. (21), we have

4]l < Cnk T2 21| AK +1gy .. (23)
We consider the functions

1 o—1
Gs(x) = f}.s fjjs/k As(y,)dy,e . dyy .. (24)

By using eg. (19), (20), (23) and eq. (24), we have

supp Gg(x) c I ... (25)
1Glles < € {Z5ZIRMAK ey [P 1117 .. (26)
. 1
flo,s Gs(x+js) x%dx=0,q=0,.., [E] .. (27)
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Thus the functions G¢(x) are multiples of (p, oo, [ﬁ]) and by eqg. (11) and eqg. (12) we get

W) —P°(x) = Ir¢ Gy (x)
1553 Gullp g = (4l 153 6o () . B() Py

< C( (225 (SR ) 7)) anye
< €y (Z8|a% a0 p)|”) dx)?

< CQy (TR a0 () B[ ) dx

sl

< Cwpe@hnh),, ..

Lemma 3

If (x) € SY ), k=012,..,n=23,..and 0 < p < 1, then:

[a%wll, , < CCh*lpllp,p .. (28)
Where 0 < h < % , C > 0 independent of n, h.

Proof:

Let k,n and Y (x) be as above, l = 1,2, ... and% <p <1.Then
1k, ; < €)'y, . (29)

We will to prove eq. (29). Let AL (x) = Y14 a; AL S; (x) .. (30)

be the formula for the difference of order [ to the B-spline of y(x).
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It’s clear forn > n(k, 1) and 0 < h < C(k, l)%.

The functions A% S;(x) have the following properties

SuppALS;(x) € I; = [8_1, 8i41e41) - (31)

;]

follilA Si(x + 8_)x%dx = (=)' [ S;(x + 8;_1) A} x%dx = 0 - (32)

q=0,1,..,1—1,andfromeq. (7), we have

laksill , < c(rmymn®o - < ¢ {(hn)mi“<l"‘> —} ;1"

nd

There for by using eq. (11)

1

lakwl , < € {Zidal? (hymin®o P < ¢ (hnymin |y, 4 - (33)

This yield eq. (29) and eq. (31) in the case 0< p < 1, we still have the approximate of eq.
(33) and the obvious the relation [[A}S;| < C[|A%S;]], - Thus eq. (31) remains valid.m

Results
In this section, we give certain results, which are necessary to prove it. The direct results of
Jackson type are presented in the following:
Theorem 1
Let€ L,3(X),0<p<1landk =0,12,... Thenthe following hold forn = 1,2, ...

E0 (s < COI0k(Fr s .. (34)
Where C(p) > 0 depending on p.
Proof:
Let kK°=0,1,2,.., 0<p <1 and for any integer k > k" such that eq.(34) holds, this
meaning:
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e Py = inf{If = Wllpp € 5P} < CPIOS Dy
< CPI0e(f)ps - (39)
Where n = 1,2, ..., on the other hand § = 2/ > k by lemma (2) there exists a corresponding
spline 1/;° € S(kc) with
g = C@@(f, )pﬁ < C)w(f, )pﬁ .. (36)

Now the wanted results can be attained by typical consideration from eq. (6), (16), (35) and
eq. (36) If 2! < n < 21*1 | then

8 (pp < €5 (P < IIf - vl

< {0l @ = 9B 0P + Gl W21 — PR e}
R 1
< c{OxllF @) = wa @B 4P + 0, (. 5]

1 1
< CPwe (fi5)pp < COI@ (g

So by eq. (34) with k’ instead of k is followed. m

The converse results of Bernstein type are including:

Theorem 2

If fEL,p(X),0<p<1landk=0,1,2,..,thenthe following inequalities holds

0, Dpg < C) T, 1KV ()P N . (37)
For n = 1,2, ... with C > 0 depending on p.

Proof:

Let;(x) be the best spline approximationto € L, z(X) , 0 <p <1 (i.e.)
e Npp =inf{IIf —wll . ¥y€ SO},

From eq. (4), (16) and eq. (28), we have

0 ps < CO) 7z 29 (| = Wyl
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< C(p) = 299 {(fx| (W; @) — B[ dx)?
1
+(x|(F ) = @1 B[ dx)P)

<C@)= 2 {eW Fpp + €S (P}

< c)= 2{eX. (Nyp} forn > 2) ... (38)
So, from eq. (4), eqg. (6) and eq. (38),we obtain:
wk(f,2)h 5 S 0ulf = P D)h 5+ By 0 () — Y-, )b
<cofllf-wl B+z;-‘ RN
< C) {27029 (D}

The inverse theorem follows. m

Conclusion

We mentioned obviously that the Direct and inverse theorems which state the relationship
between the degrees of best approximation of unbounded functions in weighted space with
respect to spline polynomials and modulus of continuity of order k, in our paper developed

the Direct and inverse theorems of unbounded functions in weighted spaces (L, g(X)) ; 0 <

p < 1 by spline approximation in terms the kth modulus of continuity.
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