Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ## Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest #### Ali .I. Mustafa Department of Chemistry, College of Education for Pure Science, Tikrit University, Tikrit, Iraq Received 4 April 2014; Accepted 12 June 2014 ### **Abstract** Anew series of chemical compounds derived from 7,8-Dichlorodibenzo [b,d] thiophene-2-carbxylic acid were prepared. Reaction of 7,8-Dichlorodibenzo [b,d] thiophen-2-ethyl ester with hydrazine hydrate yields ,acidhydrazid. Dithiocarbzate prepared by reaction between carbon disulfide and carbahydrazide.4-amino-3-mercapto-1,2,4-triazole Prepared by reaction of thiocarbazate with hydrazine hydrate. Schiff bases prepared by reaction of 4-amino-3- mercapto-1, 2, 4-triazole with different substituted aldehydes. Seven membered ring compounds prepared by reaction of Schiff bases with maleic anhydride. The chemical structures of the products were characterized by (F.T.IR and 1 H, 13 C. NMR), antibacterial activities of some of the prepared compounds were studied against four – kinds of bacterial. **<u>Key Words</u>**: synthesis, antibacterial, Derivatives, 1,2,4-triazole, 1,3-oxazenpine, Schiff bases, maleic anhydride. Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa # تحضير مشتقات جديدة من 7, 8 – داي كلورو داي بنزو [b,d] ثايوفين – 2- حامض الكاربوكسليك ذات الفعالية البيولوجية و المهمة صيدلانيا علي ابراهيم مصطفى قسم الكيمياء – كلية التربية للعلوم الصرفة – جامعة تكريت, تكريت, العراق ### الخلاصة مجموعة جديدة من المركبات الكيميائية المختلفة المشتقة من 8,7-دايكلورودايفنيل [b,d] ثايوفين -2- حامض الكاربوكسيليك تم تحضيرها من تفاعل 8,7 - دايكلوردايفنيل [b,d] ثايوفين -2- مثيل استر مع الهايدرازين هيدريت قد انتج الكاربوهيدرازايد, وتم تحضير مادة الثايوكاربازيت من تفاعل الكاربون داي سلفايد مع الكاربوهايدرازايد, كما تم تحضير قواعد مادة 4- امينو -3- مركبتو 4,2,1- ترايازول من تفاعل الثايوكاربازيت مع الهايدرازين هايدرايت .كما تم تحضير عدد من شيف من تفاعل بعض الالديهايدات المعوضة مع 4- امينو -3- مركبتو -1,2 بمترايازول ,وكذلك تم تحضير عدد من مركبات الحلقة السباعية من تفاعل قواعد شيف المحضرة من التفاعل الالديهايدات المعوضة مع 4- امينو -3- مركبتو 4,2,1 ترايازول مع انهدريد حامض الماليك تم تشخيص المركبات المحضرة باستخدام اطياف الاشعة تحت الحمراء (اربعة (الربعة الرئين النووي المخناطيسي [H, 13C NMR] كما تم دراسة الفعالية المضادة للبكتريا لنماذج منها ضد (اربعة انواع) مختلفة من البكتريا. الكلمات الدالة: تحضير ،مضاد بكتيري، مشتق، , 1,2,4- triazole, 1,3-oxazepine , قواعد شف, anhydride , anhydride ### Introduction Large number of 1, 2, 4-triazole-containing ring system have been incorporated into wide variety of therapeutically interesting drug candidates including anti-inflammatory ^(1,2) (CNS) stimulants, sedatives, anti-anxiety, antimicrobial agents ^(2,3), and anti-mitotic activity such as fluconazole, intraconazol, voriconazole ^(5,6). Molecular hybridization approach is an emerging structural modification tool to design new molecules with improved pharmacophric properties.1,2,4-triazol-based Mycobacterium tuberculosis inhibitors⁽⁷⁾ and synthetic natural product –based tricyclic (carbazol, dibenzo [b,d] thiophene) antimycobacterial agents were # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa integrated in one molecular platform to prepare various novel 1,2,4-triazol and 1,2,3-triazole hybrids using click chemistry. The results of study provided the potential importance of tubercular hybridization and the development of triazole clubbed dibenzo [b,d] thiophene based lead candidates to treat mycobacterial strains infections (8). 4-Amino-5-substituted 3mercapto-1,2,4-traizoles are useful intermediates for the synthesis of various condensed 1,2,4triazolo derivatives. The most widely utilized method for the preparation of these derivatives depends on the condensation of the carboxylic acid hydrazide with carbon disulphide in ethanolic potassium hydroxide to yield the corresponding potassium-3-acyldithaiocarbazate, which are converted to the corresponding 4-amino -5-substituted-3-mercapto-1,2.4-traiazoles via reaction with hydrazine ^(9,10). Alternatively, the cyclization of the 3-acyldithaiocarbzates via heating with aqueous potassium hydroxid yields the corresponding 5-substituted-2mercapto-1,3,4-oxadiazoles, which yield the corresponding 4-amino-5-substituted -3mercapto-1,2,4-triazoles upon heating with hydrazine (11). Literatures were expected to obtain reinforcement of biological activities by means of substitution at different positions of 3substituted-4-amino-5-mercapto-1,2,4-traiazole derivatives (12.13.14), Schiff bases prepared by reaction of 7,8-Diclorodibenzo [b,d] thiophene-1,2,4-triazole with substituted aldehyde and 1,3-oxazepines prepared also by reaction of Schiff bases with maleic anhydride⁽¹⁵⁾. ### **Experimental** #### **Instruments** Melting points were determined by using (Electro thermal melting point apparatus). Galen Kamp, and remain uncorrected. The (FTIR) spectra were recorded on (Shimadzu Infrared Spectrophotometer) in KBr discs (δ cm $^{-1}$). Melting points, crystallization solvent of percentage yields are listed in a tables (1 – 6). ¹HNMR and ¹³CNMR spectra (DMSO – d₆) were recorded on university of Al albayt, Jordan. # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa #### **Materials** Some of chemicals used directly while others were purified to obtain the highest purity. Triazole derivatives (Schiff bases and 1, 3- oxazepine) prepared from 7, 8-Dichlorodibenzeo [b, d] thiophene carboxylic acid. # 1- Preparation of methyl – 7, 8 – dichlorodibenzo [b, d] thiophene – 2 – carboxylate ⁽¹⁶⁾ (4ml) of 98%sulfuric acid was added drop wise with continues stirring to a solution of 7,8-dichlorodibnzo [b, d] thiophene-2- carboxylic acid (4g,0.025mol) in methanol (40ml),and the mixture was heated under reflux for 3hrs.and cooling .The mixture was poured into crushed ice (125 gm) and the precipitated crystalline was filtered, washed with water, followed by10% sodium hydrogen carbonate solution and finally with water and dried to yield (3.75gm) of methy 1-7,8-dichlorodibenzo [b,d] thiophene-2- carboxylate. physical properties are listed in table (1). ### 2- Preparation of 7,8-dicholorodibenzo [b,d] thiophene-2- carboxylic acid hydrazaide (16) A mixture of methyl -7,8-dichlorodibenzo [b,d] thiophene-2-carboxylate (3.0gm, 0.02 mol) and 98% hydazine hydrate(6.0 ml) was heated under reflux with stirring for15 hrs. And cooling, dist. cold water(70ml)was added to the mixture and the separated white crystalline was filtered, washed with cold water ,dried and crystalized from water and dried .physical properties are in table(2). ### 3- Preparation of potassium N-2-(7,8-dichloro di benzo[b, d] thiophen) di thaio carbazate $^{(17)}$ Carbon disulphide (0.8ml, 0.005mol) was added drop wise to a solution of 7,8-dichlorodibenzo [b,d] thiophene -2-carboxylic acid hydrazide (1.6 gm, 0.005 mol) and potassium hydroxide (0.4 gm,0.005 mol) in ethanol (10 ml), the mixture was stirred at room temperature for 3hrs. Dry ethyl ether (10 ml) was then added to the mixture and the # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa precipitated solid was filtered, washed with ether and dried at 65 °C for 1hr. physical properties are listed in table (3). # 4- Preparation of 5-(7,8-dichlorodi benzo [b,d]thiophene)4-amino-3-mercapto-1,2,4-triazole A mixture of potassium N-(2-7,8-dichlorodibenzo [b,d] thiophene) dithiocarbazate (0.7 gm ,0,0017 mol) and 98% hydrazinne hydrate (0.5 ml) was heated under reflex till the evolution of hydrogen sulphide completely ceased down (about 1hr). cooling. Water (10 ml) was added the mixture was neutralized with 10% hydrochloric acid and allowed to stand for 3 hrs. The separated crude product was filtered, washed with water, dried and Rerystallized by ethanol. physical properties are listed in table (4). # 5- Preparation of 5-(7, dichlorodibenzo[b, d]thiophen) 4- arylideneamino-3-mercapto-1,2,4-triazoles (Schiff bases) (17) A mixture of a appropriate aromatic aldyhyde (0.0005 mol, 0.53 g m) and 5-(7,8-dichlorodibenzo [b, d] thiophene) -4-amino-3-mercapto-1,2,4-triazole (0.005 mol,0.19 gm)in acetic acid (4 ml) was heated under reflux for 4 hrs. Cooling .The separated solid was filtered, washes with cold ethanol (5ml), dried and Rcrystallized. Physical properties are listed in table (5). # 6- Preparation of 1,3-oxazepine derivatives of 5-(7,8-dichlorodibenzo[b,d]thiophene)4-arylidene amino-3-mercapto-1,2,4-riazoles.(Schiff bases) (14) A mixture of (0.0003 mol) Schiff bases which was prepared before in table (5), and(0.0003 mol,0.03 gm) of maleic anhydride, was mixed using, 2 drops of glacial acetic acid by fusion reaction with stirring for (5) minute till the color of fussed materials is fixed ,then let the mixture to cool and clean with ethanol. Dried and recrystallized by ethanol. The physical properties are listed in table(6). # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa #### **Biological testing:** Antimicrobial activity of the compounds (4, 5, 6, 7, 14, 16, 17, 20) was examined by agar diffusion methanol⁽¹⁸⁾, using four different species i.e. (Escherichia coli, salmonella typhi, pseudomonas auruginosa, staphylococcus aureus). The zone of inhibition was measured in mm ⁽¹⁹⁾ and is represented by (-), (+), (+++), (+++). Depending upon the diameter, the antimicrobial screening upon data are recorded in table (7). The results indicated that all the assayed compounds have activity against the tested organism, but with different effects of sensitivity using three antibiotics (Amoxicillin, Metheprim, Gentamycin) to compare between the different species activity used (E. coli, salmonella typhi, pseudomonas auruginosa, staphycococuse aureus). ### Results and discussion ### 1- FTIR spectral In this research the starting material is 7,8-Dichlorodibenzo [b, d] thiophen-2-carboxylic acid, from which after esterification 7,8- Dichlorodibenzo [b, d] thiophen-2- carbazide (compound2) and 7,8- Dichlorodibenzo [b, d] dithio carbazate, then the important derivative 7,8- Dichlorodibenzo -2-amino -3-mercapto-1,2,4-triazole is prepared (compound 4). - **a.** Compound (4) by using FTIR spectral ^(20, 21) 1,2,4-triazole is identified in which stretching band at (3238 cm⁻¹) for (N-H) and also there is a band at 2586 cm⁻¹ for (-SH) group, also strong and obvious band for (-C=N) bond in triazole ring appear in (1525-1608 cm⁻¹) and another sharp and strong band for(-C-N) in triazole ring appear at (1296 cm⁻¹), and middle strong band belong to (-N-N-) in triazole ring at (1045 cm⁻¹) and absorption band at (634 cm⁻¹) for (C Cl) stretching band. (Figure 1). - **b.** Compound (6): is prepared as-1,2,4-triazole derivative by Schiff base reaction, by using FTIR spectral to identified the compound, in which stretching band absorption for (-C=N-) # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa bond at (1525cm⁻¹)for Schiff base bond, also absorption band at (2497-2584 cm⁻¹) for band stretching (-SH) as a weak band, also absorption bands in range of(1525-1608 cm⁻¹) for stretching band of (-C=N-) in triazole ring, and another band in range of (1232-1278 cm⁻¹) for (-C-N) band stretching, also absorption bands in a range of(819-1086 cm⁻¹) belong to (-N-N-) bond stretching in triazole ring, and also another bands for benzene ring substitution for example (C – Cl) bond at 696 cm⁻¹, and aband in arrange of (2930-3050 cm⁻¹) for (CH₃) group, and absorption band at (2584 cm⁻¹) for (-SH) stretching band. (Figure 2). c. Compounds (15): 1,3-oxazepine compounds are prepared by a mixture of Schiff base of 1,2,4-triazole with maleic anhydride in presence of drops of acetic acid by fusion reaction, some compounds prepared are identified by FTIR spectral, compound(15) is example for identification, so that absorption bands appears in (1022 – 1159 cm⁻1) belong to (C-N) band stretching and another in (1579-1640 cm⁻¹) for (C=O) stretching band, in addition to two absorption bands in a range of (1222-1278 cm⁻1) and (1579-1600 cm⁻¹) for (C=C) aromatic stretching bond with absorption band in (1222-1278 cm⁻¹) for (C-O) stretching bond, and absorption band at(690 cm⁻¹) for (C-Cl) and absorption band at(2657 cm⁻¹) for (-SH) stretching band. (Figure 3). ### 2- ¹HNMR and ¹³CNMR spectral The HNMR and ¹³CNMRspectral compounds prepared are studying with using (DMSO-d₆) solvent and TMS (tetra methyl silane) and using standard (δ. ppm). **a.** Compound (4): ¹HNMR spectral of compound (4) single band of compound observed at (5.53 ppm) with integration corresponds to two protons due two protons of amine group, with wide band (7.3 ppm) due to the protons of the aromatic ring with integration corresponds to five protons, also another single bond at (13.5 ppm) with integration corresponds to one proton for (-SH) group, with appear some humidity of the solvent in a range of (3.4-4.0 ppm). (Figure 5). # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ¹³CNMR: 38.72, 39.0, 39.27, 39.55, 39.83, 40.11, 40.39 (dibenzo [b, d] thiophene), 126.72, 128.42, 128.79 (Ar-C), 151.25, 154.29 (triazole C-5 and CH=N),163.2 (Triazole C-3). (Figure 6). c. Compound (11): ¹HNMR spectrum of compound (11) single band unfragment at (10.3 ppm) belong to (-N=C-H-) proton with appearing multiple bands at a range of (7.29-8.15 ppm) related to aromatic protons, in addition to appearing of single band at 13.5 ppm related to (SH) group, and single bands at (3.3-3.8 ppm) to (4.0-4.2 ppm), (5.5 ppm) belongs to (-C-H) group, with appearing some humidity for the solvent in a range (0.8-2.7 ppm). (Figure 9). ¹³CNMR spectrum of compound (11): 122.4, 126.5, 126.7, 126.8, 128.1, 128.4, 128.49, 128.6 128.79, 128.8, 130.8, 133.97, 134.49, 135.0, 135.4, 148.3 (for benzo thiophenE and benzene), 150.5, 151.2, 159.5 (-1,2,4-triazo1 C-5 and CH=N), 161.6, 165.9 (Triazole C-3). (Figure 10). **b.** Compound (14): ¹HNMR spectrum of compound (14) shows single band at (3.2 ppm) with integration corresponds to six protons due to (-N(CH₃)₂) group, with appearing another band at (4.0-4.3 ppm) with integration corresponds to two protons of aliphatic bond (HC=CH), and other band inclued multiple bands at a range of (6.5-7,8 ppm) belong to protons of aromatic rings, also there is a singl bond at (7.9 ppm) due to protons of 1,3-oxazepine group (-N-C-O) with integration corresponds to one proton, in addition to appearing another band at (13.46 ppm) with integration corresponds to one proton For (-SH) group (figure). (Figure 11). ¹³CNMR spectrum of compound (14) 128.4, 128.8, 130.2 for (benzo thiophene), 101.5, 111.5 for (benzene), 41.67, 41.8 for (-CH₃), 154.29 (1,2,4-Triazole C-5 and CH=N), 164.5 (1,2,4-Triazole C-3). (Figure 12). **c.** Compound (18): ¹HNMR spectrum of compound (18) show double band at (6.1-6.6 ppm) with integration corresponds to two protons due to (-HC=CH-) group with appearing one multiple band in arrange of (7.2-7.7 bppm) belong to protons of aromatic rings, in addition to appearing two singlet bands every one integration corresponds to one proton in a range of (9.5-10.2 ppm) for two hydroxyl groups, and also another single band appear at 13.8 ppm with integration corresponds to one proton for (-SH) group. (Figure 13). # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ¹³CNMR spectrum of compound (18) 102.3, 109.79 (benzene), 126.7, 126.8, 128.29, 128.4, 128.7, 129.7, 135.1, 145.6 (benzo thiophene), 149.9, 160.48 (1,2,4-triazole C-5 and CH=N), 163.24 for (1,2,4-Triazole C-3), 164.8 for (carboxyl and -C=C). (Figure 14). #### The path ways preparation of the prepared compounds 5-(7,8-dichlorodibenzo [b,d]thiophene) 4-amino-3-mercapto-1,2,4-triazole # Scheme (1): # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa Scheme (2) 116 Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa path ways preparation of 5-(7, 8 - dichlorodibenzo [b, d] thiophene)-2-phenyl-4,7-dioxo-4,7-dihydro-1,3-oxazepine derivatives Scheme (3) Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ### The prepared Compounds | Compd
№ | Chemical structure | |------------|---| | 1 | methyl - 7, 8 - dichlorodibenzo [b, d] thiophene - 2 - carboxylate | | 2 | 7.8-Dichlorodibenzo[b,d] thaiophen 2-carbonylic acid hydrazide | | 3 | CI S S-K+ CI S S-K+ potassium N-2-(7,8-dichloro di benzo[b, d] thiophen)di thiocarbazate | | 4 | SH NH2 S-(7,8-dichlorodibenzo [b,d]thiophene) 4-amino-3-mercapto-1,2,4-triazole | | 5 | N-N SH N SH N SH N SH S-(7,8-dichlorodibenzo[b, d]thiophen) 4-(benzylideneamino)-3-mercapto-4H-1,2,4-triazole | # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest ### Ali .I. Mustafa | NI NI | |--| | N-N
SH
CI | | (CH3) ₂ | | 5-(7,8 dichlorodibenzo[b, d]thiophene) 4-{[4-(dimethylamine)benzylidne]amino}-3-mercapto-1,2,4-triazole | | CI SH N SH | | OH | | 5-(7,8 dichlorodibenzo[b, d]thiophene) 4-{[4-(hydroxy)benzylidne]amino}-3-mercapto-1,2,4-triazole | | CI SH SH | | 5-(7,8 dichlorodibenzo[b, d]thiophene) 4-{[4-(chloro)benzylidne]amino}-3-mercapto-1,2,4-triazole | | CI SH SH CI SH OHCH3 | | 5-(7,8 dichlorodibenzo[b, d]thiophene) 4-{[4-(meothoxy)benzylidne]amino}-3-mercapto-1,2,4-triazole | | CI N SH N SH OH | | OH 5-(7,8 dichlorodibenzo[b, d]thiophene) 4-{[2,4-(dihydroxy)benzylidne]amino}-3-mercapto-1,2,4-triazole | | SH N-N SH N N-N SH N N N N N N N N N N N N N N N N N N | | | # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest ### Ali .I. Mustafa | 12 | SH Cl N N SH Cl N C H Br 5-(7,8 dichlorodibenzo[b, d]thiophene) 4-{[2-(bromo)benzylidne]amino}-3-mercapto-1,2,4-triazole | |----|---| | 13 | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-phenyl-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | | 14 | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2[4-(dimethylamino)phenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | | 15 | S-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-[4-hydroxyphenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | | 16 | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-[2-nitrophenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa | 17 | CI SH CI | |----|--| | | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-[4-chlorophenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | | 18 | CI SH OH | | | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-[2,4-dihydroxyphenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | | 19 | CI N SH Br | | | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-[2-bromophenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | | 20 | CI SH OCH ₈ | | | 5-(7,8-dichlorodibenzo[b,d]thiophene)[4-(4,7-dioxo-2-[4-methoxyphenyl]-4,7-dihydro-1,3-oxazepine-3(2H)-yl] | Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ### **Table(1):The physical properties of compound(1)** | Comp | Molecular | color | M.P °c | Yield% | RT | Recryst | |------|---------------------|-------|--------|--------|-----|---------| | .№ | formula | | | | CA | solvent | | 1 | $C_{14}H_8O_2Cl_2S$ | white | 76-79 | 78 | 3hr | Ethanol | ### Table(2): The physical properties of compound(2) | Comp | Molecular | color | M.P °C | Yield% | RT | Recryst | |------|--|-------|---------|--------|-------|---------| | .№ | formula | | | | | solvent | | 2 | C ₁₃ H ₈ OCl ₂ N ₂ S | white | 116-118 | 74 | 15hrs | Ethanol | | | | | | | | | # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest #### Ali .I. Mustafa ### Table(3): The physical properties of compound(3) $$\begin{array}{c|c} C & H & S \\ \parallel & \parallel & N \\ C & N \\ H & \end{array}$$ | Comp | Molecular formula | color | M.P °C | Yield% | RT | Recryst | |------|---|-------|---------|--------|------|---------| | .№ | | RNA | | FOR | | solvent | | 3 | C ₁₄ H ₇ ON ₂ S ₃ Cl ₂ k | white | 226-227 | 86 | 3hrs | Ethanol | ### Table(4): The physical properties of compound(4) | Comp | Molecular | color | M.P °C | Yield% | RT | Recryst | |------|-----------------------|-------|---------|--------|------|---------| | .№ | formula | | | | | solvent | | 4 | $C_{14}H_8N_4S_2Cl_2$ | white | 155-158 | 71 | 1 hr | Ethanol | | | | | | | | | Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ### Table(5): The physical properties of -1,2,4-triazole shiff base compounds(5-12) | Comp
.№ | Ar | Molecular formula | Color | M.P
°C | Yield% | RT | Recryst solvent | |------------|---------------------|--|-----------------------|-------------|--------|------|-----------------| | 5 | O | $C_{21}H_{12}N_4Cl_2S_2$ | White yellow | 178-
180 | 76 | 5hrs | Ethanol | | 6 | (CH3) ₂ | C ₂₃ H ₁₈ N ₅ Cl ₂ S ₂ | Orange | 168-
170 | 66 | 5hrs | Ethanol | | 7 | Ø _{OH} | C ₂₁ H ₁₃ ON ₄ Cl ₂ S ₂ | Light
metalli
c | 223-
224 | T 75 | 5hrs | Ethanol | | 8 | Q
Q | C ₂₁ H ₁₁ N ₄ Cl ₃ S ₂ | Light
metalli
c | 158-
160 | 58 | 5hrs | Ethanol | | 9 | OCH ₃ | C ₂₂ H ₁₄ ON ₄ Cl ₂ S ₂ | Light yellow | 152-
155 | 60 | 5hrs | Ethanol | | 10 | OH OH | $C_{21}H_{12}O_2N_4C_{12}S_2$ | Light
brown | 210-
212 | 72 | 5hrs | Ethanol | | 11 | NO ₂ | $C_{21}H_{11}O_2N_4C_{12}S_2$ | Pall
Yellow | 146-
148 | 50 | 5hrs | Ethanol | | 12 | Br (| C ₂₁ H ₁₁ N ₄ Cl ₂ S ₂ Br | Light
metalli
c | 138-
140 | 56 | 5hrs | Ethanol | Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa # Table(6): The physical properties of 7, 8 - dichlorodibenzo [b, d] thiophene-2-phenyl-4,7-dioxo-4,7-dihydro-1,3-oxazepine derivatives compounds (13-20) | Comp | R | Molecular formula | Color | M.P | Yield | Recryst | |------|-----------------------------------|--|---------------|---------|-------|---------| | .№ | // | 30 | | | % | solvent | | 13 | Н | $C_{25}H_{14}O_3N_4Cl_2S_2$ | White | 156-158 | 61 | Ethanol | | 14 | (CH ₃) ₂ N | $C_{25}H_{19}O_3N_5Cl_2S_2$ | Light orange | 160-162 | 67 | Ethanol | | 15 | P-OH | C ₂₅ H ₁₄ O ₄ N ₄ Cl ₂ S ₂ | White yellow | 198-200 | 64 | Ethanol | | 16 | m-NO ₂ | $C_{25}H_{13}O_5N_5Cl_2S_2$ | Light yellow | 159-162 | 50 | Ethanol | | 17 | p-Cl | $C_{25}H_{13}O_3N_4Cl_3S_2$ | Melatic | 152-154 | 55 | Ethanol | | 18 | o,P-OH | $C_{25}H_{14}O_5N_4Cl_2S_2$ | Light green | 187-189 | 63 | Ethanol | | 19 | o-Br | C ₂₅ H ₁₃ O ₃ N ₄ Cl ₂ BrS ₂ | // metalic | 190-192 | 52 | Ethanol | | 20 | p-OCH ₃ | $C_{26}H_{16}O_4N_4Cl_2S_2$ | Blacked white | 159-162 | 53 | Ethanol | ### Table(7)Biological testing for some prepared compounds. | Sample | Concentration | Escherichia | Salmonella | Pseudomonas | Staphylococcus | |--------|---------------|-------------|------------|-------------|----------------| | No | Mg/ml | coli | typhi | auruginosa | aureus | | 4 | 0.1 | ++ | + | + | ++ | | | 0.05 | + | - | + | + | | 5 | 0.1 | + | ++ | + | + | | | 0.05 | - | + | - | + | | 6 | 0.1 | ++ | + | ++ | + | | | 0.05 | + | - | + | + | | 7 | 0.1 | ++ | + | + | + | | | 0.05 | + | - | - | + | | 14 | 0.1 | ++ | + | + | ++ | | | 0.05 | + | + | - | + | Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa | 16 | 0.1 | + | + | - | - | |-------------|------|--------|-----|-----|-----| | | 0.05 | - | - | - | - | | 17 | 0.1 | ++ | ++ | + | ++ | | | 0.05 | + | - | - | + | | 20 | 0.1 | ++ | ++ | ++ | ++ | | | 0.05 | + | - | + | - | | Amoxicilin | 0.1 | +++ | +++ | +++ | +++ | | • | 0.05 | ++ | ++ | ++ | + | | Metheprim | 0.1 | ++ | ++ | +++ | +++ | | | 0.05 | TAT | ++ | ++ | ++ | | Genta-mycin | 0.1 | (3/4)4 | ++ | Oph | +++ | | | 0.05 | ++ | ++ | ## | ++ | Key symbols;(-) no inhibition (+)=4-7mm,(++)=8-12mm,(+++)=13-25mm Figure 1: FTIR Compound 4 Figure 2: FTIR Compound 6 Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa Figure 3: FTIR Compound 15 Figure 5: ¹HNMR Compound 4 Figure 6: ¹³CNMR Compound 4 Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa Figure 9: ¹HNMR Compound 11 Figure 10: ¹³CNMR Compound 11 Figure 11: ¹HNMR Compound 14 Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa Figure 12: ¹³CNMR Compound 14 Figure 13: ¹HNMR Compound 18 Figure 14: ¹³CNMR Compound 18 Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa ### **References** - 1. T. George, D. V. Mehta, R. Tahilramani, David, P. K. Talwalker.Synthisis of some striazoles with potential analgetic and anti-inflammatory activity. **J. Med. Chem. 1971**, 14, 335 338. - 2. P. C. Wade, B. R. Vogt, T. S. Kissick, L. M. Simpkins, D. M. Palmer. 1-Acyltriazoles as anti-inflammatory agents. J. Med. Chem. 1982, 25, 331-333. - 3. B.S.Holla, B. Veerendra .M.K. Shivanada ,B .Boojary .Synthesis, characterization and anticancer studies on some Mannich bases derived from 1,2,4- triazoles. **Eur. J. Med.** Chem.2003,39,759-767. - 4. Heindel, N.D.; Reid, J.R.J. Heterocycl, Chem 1980, 17, 1087. - 5. Holla,B.S.;Kalluraya,B.;Sridhar,K.R.;Drake,E.;homas,L.M.;Bhandary , k.k.; Levine, M.S.Eur. **J.Med.Chem.1994**, 29, 301. General papers ARkivoc 2006 (ix)59-112. - 6. The Merck Index ,1996,12 th Edn., Merk Co. Inc. white house station. - 7. Haber Haber ,J. present status and perspectives on antimycoties with systematic effects, Cas. Lek. Cesk.2001,140,596. - 8. **J. Med. Chem. 2011** sep 8;54(17);5988-99,Novel 1,2,4-triazole derivatives for use against mycobacterium tuberculosis strains. - 9. **J.Med.Chem.2012** Apr 26;55(8);3911-22.Novel 1,2,3-triazole as potent inhibitors of Mycobacterium tuberculosis. - 10. [J.R. Reid, N.D. Heindel. Improved synthesis of -5-substituted-4-amino-5-mercapto(4H)-1,2,4- triazoles . **J.Heterocycl.Chem.1976**,13,925-926.] - 11. M.S.Karthikeyan, D. J. Prasad, B. Boojary ,K.S. Baht, B. S. Holla, N.S. Kumari .Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorphenly moiety. **Bioorg .Med.Chem.2006**,14,7482-7489. - 12. A.J.Hay, A.J. Wolstenholm, J.J. skehel, M.H. Smith. The molecular basis of the specific anti-influenza action of amantadine. **EMBO.J.1985**, 4, 3021-3024. - 13. J.R.Reid, N.D.Heindel.Improved synthesis of 5-substituted-4-amino-5- mercapto (4H)-1,2,4-traiazoles .**J.Heterocycl.Chem.1976**,13,925-926. # Novel synthesis and antibacterial activities of new derivatives of 7,8-Dichlorodibenzo(b, d)thiophene-2-carboxcyilic acid of pharmaceutical interest Ali .I. Mustafa - 14. A.A.El-Emam,M.A.Moustafa,A.M.Abdelal,M.B.El-Ashmawy.Triazoles and Fused Triazoles IV; Synthesis of 3-(1-adamantly)-6-substituted-s- triazolo [3,4-b] thiadiazoles and 3-(1-adamantly_-6-aryl-7-H-s-triazolo[3,4-b][1,3,4] thia- diazines as potential chemotherapeutic agents. Chein.pharm.J.1993,45,101-107. - 15. S. Giri, H. Singh .Synthesis of certain Schiff bases derived from 2-amino5-aryl-1,3,4-thiadiazoles. **J.Indian Chem.Soc.1966**,43,281-282. - 16. R.Huisgen, Angew. Chem Internat, Edit. 7,321, (1968). - 17. A.A.El-Emam, T.M.Ibrahim. Synthesis anti-inflammatory and analgesic activity of certain 3-(-1-adamantly)-4-subtituted -5-mercapto-1,2,4-triazole derivatives. **Arzneim Forsch** / **Drug Res.1991**,41,1260-1264. - 18. A. W., Kir by W. A., Shirrs J. S., and Turk M. "Antibiotic Susceptibility Testing by Bauer a Standardized Single Disk Method", Am. J. Clin. Patho. (1966). 45. 493 496. - 19. L. Garrod, H. Lambert and D. Grady, P. Waterworth. "Antibiotic and Chemotherapy". 5th Ed., Churchill Livingstone N. Y. (1981). - 20. R. M. Silverstein, G. C. Baddler and T. C. Morril. "Spectrometric Identification of Organic Compounds", 6th Ed. John Wiley and Sons New York (1996). - 21. F. Firrozi, K. Javidnia, A. Foroumadi and A. Shafiee, J. Heterocyclic Chem.(1995), 32, 1235.