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Abstract 
Social media has become a part of our lives. This platform is used by 

billions of users as a communication device and as a data source in real-time 
and it has become huge in people's popularity. Online Social Networking (OSN) 
such as Twitter, Facebook, and Instagram are the most effective venues for free 
expressions of people of all ages. 

With all of the easy-to-use and benefits technology that have emerged, 
there have also been negative consequences. Cybercriminals make use of this 
information and utilize social media to perform various types of cybercrimes, 
such as cyberbullying. Cyberbullying is a type of harassment carried out using 
digital technology. It's a global issue that's just getting worse. If a text has racist 
slurs, assaults or condemns any religious or community position, or stimulates 
criminal activity, it is considered threatening or abusive. 

As manual filters take some time and can lead to human annotators 
suffering from post-traumatic stress disorders, a lot of research has been done to 
automate the process. The work is frequently modeled on a supervised 
classification issue in which algorithms are trained on posts that are noticed in 
about offensive or abuse content. 

In the proposed work, the main focus was on examining the effects of 
private regulation on hate speech on social media by using a variety of 
algorithms to achieve this goal, including Random Forest (RF), Support Vector 
Machine (SVM), Ada boost, Bagging, and Convolution Neural Network (CNN). 
The five different algorithms on two datasets (Twitter) are applied to detect hate 
speech and compare their accuracy. 

The best accuracy value overall classification algorithms were obtained 
with new dataset and Term Frequency–Inverse Document Frequency (TF-IDF) 
feature extraction methods, the best accuracy value of the SVM classifier 
=0.9648, and for the RF classifier  is 0.9598, and the best accuracy value of the 
AdaBoost classifier  is 0.9476, and for the Bagging classifier is 0.9534, and 
finally, best accuracy value of the CNN classifier is 0.9572. 
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And finally, in the new dataset, the best results were obtained for the 
SVM algorithm, with an accuracy of 0.9648, and in the old dataset, the best 
results for the Bagging algorithm were obtained with an accuracy of 0.9224. 
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Chapter one 

General Introduction 

1.1 Introduction 
The Internet era has had a huge impact on the world since it has 

brought people together from all over the world. Now, without ever meeting 

them personally, people can talk and establish connections with others. 

Social media has become a part of our lives [1]. 

Social media is an ideal platform for exchanging words and ideas as 

well as disseminating the most up-to-date information. Recent news can be 

obtained at a breakneck speed and in the blink of an eye [2]. With all of the 

benefits and easy-to-use technology that have emerged, there have also been 

negative consequences. Cybercriminals make use of this information and 

utilize social media to perform various types of cybercrimes, such as 

cyberbullying. Cyberbullying is a type of harassment carried out using 

digital technology. It's a global issue that's just getting worse. If a text has 

racist slurs, assaults or condemns any religious or community position, or 

stimulates criminal activity, it is considered threatening or abusive [3]. 

It has been established that victims of cyberbullying become 

dangerously afraid and may have violent revenge fantasies or even suicidal 

thoughts as a result of the bullying. They are depressed, have low self-

esteem, and are anxious. Cyberbullying is worse than physical bullying 

because it occurs behind the scenes and at all hours of the day and night. 

Even the bully's tweets or comments don't go away; they linger with the 

victim for a long time and have a mental impact on them. It's almost like 

ragging, but it happens in front of tens of thousands of mutual friends, and 

the scars last as long as the messages do. The victims are humiliated to an 

unimaginable degree as a result of the nasty and humiliating messages. The 

necessity for analysis to provide findings that empower victims, strengthen 
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public campaigns, and discourage abusers is highlighted by Simons [4]. 

Likewise,  the employment of remedial measures to prevent online 

harassment against Muslims or women by social network operators, such as 

Twitter or Facebook urged by Barlow and Awan [5]. 

As manual filters take some time and can lead to human annotators 

suffering from post-traumatic stress disorders, a lot of research has been 

done to automate the process. The work is frequently modeled on a 

supervised classification issue in which algorithms are trained on posts that 

are noticed about to offensive or abuse content [6]. 

In this study, Random  Forest, SVM, Ada boost, Bagging, and CNN  

methods are being used for detecting hate speech. Random forest (RF) 

classification is a group algorithm in which each group tree consists of a 

sample of replacements from the training pack (i.e. a bootstrap sample). 

Instead of allowing each classification vote for one class, the Random 

Forest Classifier combines classification by averaging its probabilistic 

prediction [7]. SVMs are supervised learning algorithms for regression and 

classification that operate well in high-dimensional domains. The text 

classification tasks SVM classifications demonstrate good performance [8]. 

Robert Schapire and Yoav Freund proposed the Ada-boost, as one of the 

collaborative boosting classifiers in 1996. It combines many classifiers to 

improve the accuracy of the classifier. AdaBoost is an iterative ensembles 

approach. The AdaBoost classification generates a powerful classification 

by merging many low-performance classification systems, leading to a very 

precise classification [9].  Bagging is an ensemble method that trains each 

classifier for a random redistribution of the training set, each training set of 

the classification is formed by random drawing, replacement N examples — 

where N is the size of the first training set; in the resulting training set many 

of the original instances can be repeated, while others can remain. Every 

individual classifier in the group is produced with a separate random 



Chapter One                                                                  General Introduction 

  
 

3 

selection of the training set [10]. One of the biggest issues in natural 

language processing was text classification. The development of profound 

learning is a prominent option for the neural network (CNN). The initially 

proposed CNNs for images nonetheless suffer several of critical challenges 

in text handling [11]. 
 

1.2 Related Works 
        Many kinds of researches and studies are dealing with the detection 

and hate speech and abusive languages, among which we include the 

following: 

 

 Del Vigna et al. 2017 [12] attempted to halt and curtail the worrying 

spread of such hate campaigns. They evaluate the content of the 

linguistic comments that occurred on a collection of pages of public 

Italian, using Facebook as a benchmark. To separate the types of hate, 

they first suggest a range of hate categories. Following that, up to five 

different human annotators annotate the crawled comments according 

to the established taxonomy. They design and implement two 

classifiers for the Italian language, based on distinct learning 

algorithms, using sentiment polarity, word embedding lexicons, and 

morpho-syntactical characteristics. The first is relying on  Support 

Vector Machines (SVM), while the second is based on a specific  

Recurrent Neural Network termed Long Short Term Memory 

(LSTM). On the job of hate speech recognition, these two learning 

algorithms were put to the test to see how well they classified. The 

results demonstrate that the two classification approaches tested in the 

first Italian Hate Speech Corpus handwritten text in social media are 

efficient. Obtain results of F-score of about 0.72. 
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 Albadi et al. 2018 [13] Proposed a system to handle the problem of 

recognizing discourse on Arabic Twitter that promotes religious 

intolerance.  Describe how the initial public Arabic dataset annotated 

for the goal of the detection of religious hate and the first Arabic 

vocabulary consisting of phrases often used in religious discourses 

and values that signify their polarity and strength was produced. 

Then, using deep learning, n-gram, and lexicon-based approaches, 

created several categorization models. Following that, a detailed 

comparison of the performance of various models on a newly unseen 

dataset is presented.  They conclude that with pre-trained word 

embeddings and simplistic recurrent neural network (RNN) 

architecture of Gated recurrent unit (GRU)scan adequately detect 

religious hate speech with AUROC of  0.84. 
 

 

 Ruwandika et al. 2018 [14] To complete the objective of 

automatically identified hate speech,  supervised and unsupervised 

machine learning algorithms of five models were created and 

utilizing. A local English text collection was used for the experiment.  

For the purposes of this experiment, hate speech is defined as the use 

of language to insult or spread hatred toward a group or individual 

based on social status, gender, race, or religion.  The task of hate 

speech identification was then compared using both supervised and 

unsupervised learning algorithms with various feature types. With an 

F-score of 0.719, the Naive Bayes classifier with Tf-idf features 

outperformed all other supervised and unsupervised models. The 

KMeans clustering model, out of all five, performed the worst in 

practically every case. This could explain why the problem of 
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identifying online hate speech has been framed as a supervised 

learning activity. 

 

 L. Jiang et al. 2019 [15] According to multiple methods, they tried to 

find out which method has the best accuracy of detecting hate speech 

from tweets. The major innovation of this article is that they used 

different ratios of data to compare with multiple methods at the same 

time. They used the Dataset named Hate speech dataset published on 

Kaggle tiled. For this Dataset, two CSV files are present in the 

downloadable folder referring to the training and testing set 

respectively. In this case, roughly less than 10,000 unique labeled 

values (tweets data) are present. To add useful information to their 

model, they append it to the end of the other dataset. And I always 

used the other Dataset called Twitter Sentiment Analysis datasets 

published on Kaggle. For this Dataset, there are also has two files 

present in the downloadable folder referring to the training and testing 

set. All of the datasets have the labeled dataset of not racist/sexist and 

racist/sexist even not so more. As a result, good performance is 

obtained by using machine learning when data is small. Good results 

can be obtained by using deep learning when they used more data for 

the experiments. Using BiRNN can get the best results, compared 

with other methods they used. Even if this method is superior to other 

models, they have to consider the type of data set in the future. The 

results show the good performance is obtained by using when data is 

small, and good results can be obtained by using deep learning when 

we use more data for our experiments. 

 

 Sandaruwan et al. 2019 [16] they Proposed machine learning-based 

and lexicon-based techniques for automatical detection of offensive 
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speeches and Sinhala hate shared on social media. With the lexicon 

generation process, the lexicon-based methodology was launched and 

the corpus-based lexicon provided 0.763 accuracy for offensive, hate, 

and neutral speech identification. A 3000 commentary body has been 

developed, which is equally spread across hate, offenses, and 

neutrality. The approach to machine learning has begun. Using this 

corpus of remark, feature groups and models for Sinhala hate speech 

detection might be identified in the best way. The highest recall value 

was 0.84 with an accuracy of 0.9233 using Multinomial Nave Bayes.  

 

 R. Shah et al.  2020 [17] study aims to put forward ideas regarding 

cyber-bullying detection on the social media platform Twitter. Their 

work involved finding the best approach and best classifier which will 

accurately detect bully tweets. Pre-processing of data has two steps: 

Collection of data and Cleaning of data. The very first and basic step 

is the collection of data that is done in two ways. The Twitter API 

was accessed and tweets were extracted, the rest of the tweets were 

obtained from the Kaggle dataset. The dataset was divided into 

training and testing data. The tweets of the training data were labeled 

by the values 0 and 1. The bully tweets were represented by value 1 

and the non-bully tweets were represented by value 0. The test data 

was not labeled. The next step was cleaning the data. The outcome of 

this study is that whichever tweet is a bully tweet is represented by 

the value 1, thus all the bully tweets are detected. The Twitter dataset 

is equally distributed into a bully and non-bully tweets and fed to 

different machine learning models. The logistic regression classifier 

provides an accurate classification of the bully and non-bully tweets 

with the precision of 0.91, recall 0.94, and F1-score 0.93. This work 
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will help curb cyber-bullying so that the users can stay at bay from 

victimization.  

 

 P. K. Roy et al.  2020 [18] proposed an automated system is 

developed using the Deep Convolutional Neural Network (DCNN). 

The dataset used for this study is taken from Kaggle.com. It was 

prepared by collecting the tweets from Twitter. The dataset 

description was missing on the uploaded webpage however, by 

manual inspection during the research they found that the dataset 

contained English written tweets only. The other tweets languages 

were not considered for this case. The developed dataset contained a 

total of 31,962 English written tweets, of which 29,720 tweets 

(0.9298) are Non-Hate Speech (NHS) and the remaining 2,242 tweets 

(0.702) are Hate Speech (HS) related tweets. The proposed DCNN 

model utilizes the tweet text with GloVe embedding vector to capture 

the tweets’ semantics with the help of convolution operation and 

achieved the precision, recall, and F1-score value as 0.97, 0.88, 0.92 

respectively for the best case and outperformed the existing models. 

They also tested other deep neural network-based models such as 

Long Short-Term Memory (LSTM), and Convolutional-LSTM (C-

LSTM) network for the same and found the DCNN model is a better 

choice for this research. 

 

 T. T. Han et al. 2020 [19] they tried to the problem of spreading hate 

speech over the social network by autonomously detection the 

posts/tweets of the network users. They performed the pre-processing 

of language context using NLP tools and then exploit a deep learning 

model called bidirectional recurrent neural network (Bi-RNN) to 

detect if the tweets are vulnerable to hate speech or not. The system is 
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then implemented according to the proposed architecture and tested 

with the popular Twitter dataset for analysis of hate speech. The 

experimental works are executed and measured with evaluation 

metrics called precision, error rate, and processing time. The 

proposed Bi-RNN model Precision results as follow Error, Rate, 

Processing Time for training 0.93, 0.16, 450 seconds, and for Testing 

0.91, 0.19, 78 seconds respectively. 

 

 Senarath et al. 2020 [20] This article gives a new empirical 

investigation with different semantic characteristics on social media 

tasks in hate speech classification. In particular, they give broad 

empirical analyses where they examine the characteristics of the 

corpus-based semantic vector space model representation, the neural 

word embedding for distributional semantics, and declarative 

knowledge patterns from the external domain semantics knowledge 

base.  In contrast to the situation of a single type of feature 

representation, their experimental results suggest that combining 

varied feature representations improves the effectiveness of hateful 

behavior classification.  Results of two major Twitter datasets for the 

detection of hate speech demonstrated a constant performance boost 

for the classification models based on hybrid characteristics (F1 score 

gain up to 0.30). The implementation of the proposed method used to 

combine various representations of the features to help the improve 

ment of the monitoring systems to human behavior.  

 

 Mubarak et al. 2020 [21] They introduced a strategy for creating an 

offending dataset that is free of the subject, dialect, or target bias. The 

largest Arabic dataset with particular tags for vulgarity and hate 

speech has been created. They examined the data to see which 
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themes, dialects, and gender are most related to offensive tweets, as 

well as how Arabic speakers use offensive language. They created 

precise standards for categorizing tweets as clean or offensive, 

including special tags for obscene tweets and hate speech. 10,000 

tweets have been tagged Finally, using SVM algorithms, run a huge 

battery of tests to get strong results (F1=0.797) on the dataset. 

 

1.3 Problem Statement 
        Hate speech has been available for a very long time in many 

communities. Some people believe racism should be suppressed in 

democratic society. The problem arises when an individual or group of 

people use terms that they believe to be protected racist language and some 

people hear and comprehend the same words believes it is hate speech. One 

effective strategy to avoid such scenarios is definitely to be wary of 

tweeting and having a possibly objectionable content control mechanism. 

This project aims to put forward ideas regarding hate speech detection on 

the social media platform twitter. By looking at most of the previous 

studies, several studies have been focused on detecting offensive language 

in social media. However, some of these studies have data volume 

problems, and others an accuracy need to be improved. 

1.4 Aim of The Thesis 

      The proposed identification of the offensive posts in the social media 

system has several goals to achieve them, as follows: 

1. Proposed an Automatic System for Identify Offensive Tweet 

Language based on Machine Learning and Deep CNN (IOTLML - 

DCNN) to classify offensive Twitter messages automatically in two 

classes: offensive and clean with a high level of precision. 
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2. Using two Twitter databases and getting important features from 

them to denotes offensive words, based on two feature extraction 

methods (count vectorizer and term frequency-inverse document 

frequency (TF-IDF)) 

3. Employ four of the most popular machine learning algorithms in the 

suggestion system which are SVM, Random Forest (RF), Ada Boost, 

and Bagging classifier  

4. Conducting an investigation study to compare the results of the 

proposed system obtained from machine learning and deep learning. 

1.5 Thesis Organization 
      Besides this chapter, the remaining parts of this thesis include the 

following chapters: 

Chapter Two: Theoretical Background 

            In this chapter, the linguistic aspect of the tools, techniques, and 

algorithms that will be applied in designing and implementing our system is 

presented. 

Chapter Three:  The Proposed  System 

         The suggested method for detecting hate speech and abusive 

languages is described in this chapter, along with a full discussion of the 

tools and techniques utilized in classification. 

Chapter Four: Experimental Results and Evaluation  

         The findings acquired from the installation of the suggested system are 

presented in this chapter, as well as the analysis and discussion of the 

results, their testing, and comparisons with previous studies. 

Chapter Five: Conclusions and Suggestions for Future work 

         In this chapter, a set of conclusions obtained from the design and 

implementation of the proposed system are presented.


