Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College Of Medicine

Comorbidities of Phototherapy Used in Neonatal Jaundice in Diyala Governorate- Iraq.

A Thesis

Submitted to the College of Medicine and Committee of Postgraduate Studying of University of Diyala in a partial Fulfillment of the Requirements for the Degree of Master in Pediatrics

By

Saif Hakeem Tofiq

M.B.Ch.B

Supervised By

Assistant Professor.Dr.Kareem Assi

Dr. Mazin Razooqi Mohammed

Obaid

M.B.Ch.B. CABP

Consultant haematologist Baqubah Teaching Hospital

2018 A.D

1440 A.H

جمهورية العراق وزارة التعليم العالي والبحث العلمي جامعة ديالى كلية الطب

تأثير العلاج الضوئي الذي يستخدم لعلاج اليرقان الولادي في محافظة ديالى، العراق.

رسالة مقدمة الى مجلس كلية الطب_جامعة ديالى وهي جزء من متطلبات نيل شهادة الماجستير في طب الاطفال

> قدمها سيف حكيم توفيق كرم بكالوريوس طب وجراحة عامة

> > باشراف

الدكتور كريم عاصي عبيد مازن رزوقي محد بورد اطفال استشاري امراض الدم/ كلية الطب مستشفى بعقوبة التعليمي جامعة ديالـــى

2018م

-\$1440

اللهِ الرَّحْمَنِ بسدم الرَّحِيمِ علُمًا وَقُل رَّبِّ زِدْنِي الورة طه }

مدَق الله أَلْعَظِيم

سورة طه الآية (114)

Supervisors' Certification

We certify that this thesis entitled (Effect of Phototherapy Used in Neonatal Jaundice in Diyala Province- Iraq) was prepared by (Saif Hakeem Tofiq) under our supervision at the college of medicine, University of Diyala in a partial Fulfillment of the Requirement for the Degree of Master in Pediatrics.

Signature

Supervisor

Assistant Professor

Dr. Kareem Assi Obaid

College of Medicine Department of Pediatrics University of Diyala

Signature

Supervisor

Dr. Mazin Razooqi Mohammed

Consultant haematologist Baqubah Teaching Hospital

Signature

Assistant Professor

Dr. Najdat S.Mahmood, Ph.D.

College of Medicine

Head of Pediatrics Department

University of Diyala

Examining committee certification

We, the members of the examining committee, certify that after reading the thesis and examining the student" Saif Hakeem Tofiq" in its contents, it's adequate for the award of the degree of master in pediatrics.

Professor

Dr.Mehdi SH.Al-Zuheiry

F.I.C.M.S.Ped-Ped.consultant

(Chairman)

Professor

Dr. Nadhim Ghazal Noaman

PhD Community

(Member)

Dr.Falah Mukheber Mustafa

Consultant Pediatrician

Al-Batool Teaching Hospital

(Member)

Assistant Professor

Dr.Kareem Assi Obaid

College of Medicine Department of Pediatrics University of Diyala

(Member/Supervisor)

Dr. Mazin Razooqi Mohammed

Consultant haematologist Baqubah Teaching Hospital

(Member/Supervisor)

Approved by the Council of the Collage of Medicine-University of Diyala.

Professor Dr. Ismail Ibrahim Latif

Dean of the Collage of Medicine-University of Diyala.

Dedication

To martyrs of Iraq from the security forces and congregate peoples' consecrator and my mother, the martyr Fatima Dawood Solaiman.

To my wife Dr. Tahreer S. Ali and to all members in my family thanks for your support.

Acknowledgements

I feel very much inebited to my supervisor Dr. Kareem Asi Obaid for his help and Dr. Mazin Razooqi Mohammed for his advice and support throughout the journey of the study.

A special thanks to:

Dr. Eethar Adel Ismail Specialist radiologist C.A.B.H.S – RAD, for his evaluation of neonatal skull x-rays.

Summary

Neonatal jaundice is the yellowish discoloration of the sclera and skin caused by hyperbilirubinemia, it is one of the most common conditions confronting neonatologists daily. It's a serious condition that may result in fatal complications if not treated properly and in a timely manner. This condition is caused by an excess of bilirubin in the blood, a yellow substance created from the degradation of red blood cells. Bilirubin is broken down by the liver and binding to albumin and being excreted as bile. Neonates in the first few days after birth produce 6 to 8 mg/kg/24h, more than twice as much as adults.

To assess the comorbidities in neonate, of phototherapy used in treatment of neonatal jaundice.

A cross sectional study conducted at Al-Batool teaching hospital for maternity and child in Diyala governorate Iraq. The period started from the 1st of Aug. 2017 to the 1st of Jan. 2018. One hundred neonates with jaundice need for treatment with phototherapy was included in the current study.

The mean age of neonates was 2.6 ± 2.3 days; 64% of them were less than 3 days age. Seventy tow percent of neonates with jaundice were delivered by NVD. Resuscitation was done for 56% of neonates while 48% of them were directly admitted to NICU. The common type of maternal infection was UTI 44%. The skull bone changes of neonates with jaundice by x-ray were found for 52% of them. Mean birth weight of neonates with jaundice was 3.3 ± 0.82 Kg, while after phototherapy was 3.2 ± 0.79 Kg, with significant reduction after phototherapy (p<0.001). Exchange transfusion was done for 17% of neonates and repeated in 8% of them. ABO differences in blood groups were detected in 51% of neonates with jaundice and RH differences were detected in 28% of them. The common co-morbidities after phototherapy were skin rash 89%, bronze baby syndrome 2.0%, dehydration 51%, diarrhea 46%, eye injury 16%, eye trauma 9% and thrombocytopenia 2%.

More than half of the babies were suffering from one or more comorbidities after treatment with phototherapy. The majorities were suffering from skin rash, dehydration, diarrhea and eye injury.

List of abbreviations:

Abbreviation	Text
AAP	American Association of Pediatrics
ABE	Acute bilirubin encephalopathy
СВЕ	Chronic bilirubin encephalopathy
CI	Confidence interval
СРАР	Continuous Positive Airway Pressure
CS	Cesarean section
CU	Cervical ulcer
DEXA	Dual-energy X-ray absorptiometry
DM	Diabetes mellitus
ELBW	Extensive low birth weight
et al	Et Alia (Latin) : And Others (English)
ΕΤCΟ	End-tidal carbon monoxide
G6PD	Glucose-6-phosphate dehydrogenase deficiency
HICs	High-income countries
HPLC	High performance liquid chromatography
IUD	Intrauterine death
LED	Light-Emitting Diode
LMICs	low- and middle-income countries
NICE	National Institute for Health and Care Excellence
NICU	Neonatal intensive care unit
NNJ	Neonatal jaundice
NNPT	Neonatal phototherapy
NVD	Normal vaginal delivery
PDA	Patent ductus arteriosus
РЕТ	Preeclampsia
РРН	Postpartum hemorrhage
PUC	Premature uterine contraction
QUS	Quantitative Ultrasound
OFC	Occipito-frontal circumference
ROP	Retinopathy of prematurity
SD	Standard Deviation (Statistics)
Sig	Significant (Statistic)

List of abbreviations:

SPSS	Statistical Package For Social Sciences
ТСВ	Transcutaneous bilirubinometer
TNF	Tumor necrosis factor
TTN	Transient tachypnea of the newborn
UB	Unconjugated bilirubin
UTI	Urinary tract infection
WHO	World Health Organization
ANS	Anilino-1-naphthalene sulfonic acid

NO.	Titles	Page
		No.
	Summary	I-II
	Abbreviations	III- IV
	List of contents	V- VII
	List of tables	VIII- IX
	List of figures	X
	CHAPTER ONE: Introduction	1-4
1.1	Introduction	1
1.2	Background	1
1.3	Incidence/prevalence	1
1.4	Epidemiology	1
1.5	Bilirubin metabolism Pathway	3
1.6	Aim of study	4
	CHAPTER TWO: Literature review	5-35
2.1	Etiology, risk factors	6
2.2	Physiological jaundice	6
2.3	Non-physiological causes	7
2.4	Physical Examination	7
2.5	Phototherapy	8
2.6	Indications	9
2.7	How to measure the bilirubin level	12

List of Contents

2.8	Types of Phototherapy	13
2.9	Monitoring Light Intensity	15
2.10	PROGNOSIS	16
2.11	Mechanism of phototherapy for human neonatal hyperbilirubinemia	16
2.12	Development of phototherapy instruments for human	18
2.13	How to manage hyperbilirubinaemia	19
2.14	The side effects of phototherapy for neonatal jaundice	19
2.14.1	Short-term side effects of NNPT	19
2.14.1.1	Interference with maternal-infant interaction	19
2.14.1.2	Electrolyte disturbance—hypocalcemia	20
2.14.1.3	Disorder of circadian rhythms	20
2.14.1.4	Bronze baby syndrome	21
2.14.2	Possible long-term side effects of NNPT	21
2.14.2.1	NNPT and allergic diseases	21
2.14.2.1.1	Mechanisms of NNPT for allergic diseases	21
2.14.2.2	NNPT and melanocytic nevi, melanoma, skin cancer	24
2.14.2.3	NNPT and patent ductus arteriosus	26
2.14.2.4	NNPT and retinal damage	27
2.15	Hematological effects	28
2.16	Bone change	29
2.17	Minimize the side effects of NNPT	30
2.18	Alternative to NNPT	34
	CHAPTER THREE: Patients and method	36-48

3.1	Study design and setting	36
3.2	Patients	36
3.3	Data collection	36
3.4	Inclusion criteria	37
3.5	Exclusion criteria	38
3.6	Method	38
3.7	Test principle	38
3.7.1	Calcium	38
3.7.2	Τ4	39
3.7.3	Т3	39
3.7.4	Phosphate	40
3.7.5	Bilirubin Total	40
3.7.6	TSH	40
3.7.7	ALP	41
3.7.8	Iron	41
3.7.9	CBC and platelet	42
3.7.9.1	Detection Principle	42
3.7.9.1.1	Hydro Dynamic Focusing (DC Detection):	42
3.7.9.1.2	Flow Cytometry Method Using Semiconductor Laser	43
3.7.10	G6PD	44
3.7.10.1	Assay principle	44
3.7.11	Coombs test	44
3.7.12	Blood group Rh	45
3.7.12.1	Principle	45

3.7.13	Urine calcium	45
3.8	Ethical consideration	47
3.9	Statistical analysis	47
3.10	Limitation of the study	48
	CHAPTER FOUR: RESULTS	49-76
4.1	Distribution of neonate according to age/days and gender	49
4.2	Distribution of blood group among parents and neonates	49
4.3	Obstetrical characteristics of neonates with jaundice	49
4.4	Distribution of variables related to NICU admission	50
4.5	Maternal and father characteristics of neonates with jaundice	50
4.6	Maternal and fetal history	50
4.7	Neonatal history and findings	51
4.8	Distribution of neonatal anthropometric measurements at birth and during the study	51
4.9	Family history of rickets and DM of neonates with jaundice	51
4.10	Distribution of neonatal investigations at admission and after 36 hours of discharge	51
4.11	Distribution of some neonatal characteristics at admission and at discharge	52
4.12	Distribution of management type for the studied neonates	52
4.13	Co-morbidities after phototherapy of the studied neonates	52

4.14	Distribution of neonatal demographic characteristics	53
	with co-morbidity after phototherapy	
4.15	Distribution of gestational characteristics and blood	53
	groups with co-morbidity after phototherapy	
4.16	Distribution of obstetrical and NICU characteristics	53
	with co-morbidity after phototherapy	
4.17	Distribution of NICU, sepsis and parental	53
	characteristics with co-morbidity after phototherapy	
4.18	Distribution of maternal history with co-morbidity after	54
	phototherapy	
4.19	Distribution of fetal history with co-morbidity after	54
	phototherapy	
4.20	Distribution of neonatal history with co-morbidity after	54
	phototherapy	
4.21	Distribution of treatment characteristics with co-	55
	morbidity after phototherapy	
	CHAPTER FIVE: DISCUSSION	77-80
	CHAPTER SIX: Conclusion and recommendations	81-82
6.1	Conclusion	81
6.2	Recommendation	82
	References	83-102
	Appendix	103
	خلاصة البحث	-1-

List of tables:

Table No.	Titles	Page
2.1	The suggested use of phototherapy and exchange transfusion in preterm infants <35 weeks gestation age.	10
2.2	Suggested Maximal Indirect Serum Bilirubin Concentrations (mg/dL) in Preterm Infants.	10
2.3	the following recommendations as to whether a serum or transcutaneous measurement of bilirubin is appropriate.	12
4.1	Distribution of neonate according to age/days and gender.	56
4.2	Distribution of blood group among parents and neonates.	57
4.3	Obstetrical characteristics of neonates with jaundice.	58
4.4	Distribution of variables related to NICU admission.	59
4.5.A	Maternal and father age groups characteristics of neonates with jaundice.	60
4.5.B	Maternal characteristics of neonates with jaundice.	60
4.6.A	Maternal history.	61
4.6.B	Fetal history.	61
4.7	Neonatal history and findings	62
4.8	Distribution of neonatal anthropometric measurements at birth and during the study.	63
4.9	Family history of rickets and DM of neonates with jaundice.	63
4.10	Distribution of neonatal investigations at admission and after 36 hours of discharge	64
4.11	Distribution of some neonatal characteristics at admission and at discharge.	64
4.12	: Distribution of management type for the studied neonates.	65
4.13	Co-morbidities after phototherapy of the studied neonates.	66
4.14	Distribution of neonatal demographic characteristics with co- morbidity after phototherapy.	67
4.15	Distribution of gestational characteristics and blood groups with co-morbidity after phototherapy.	68
4.16	Distribution of obstetrical and NICU characteristics with co- morbidity after phototherapy.	69
4.17	Distribution of NICU, sepsis and parental characteristics with co- morbidity after phototherapy.	70
4.18	Distribution of maternal history with co-morbidity after phototherapy.	71
4.19	Distribution of fetal history with co-morbidity after phototherapy.	72

4.20	Distribution of neonatal history with co-morbidity after	73
4.20	phototherapy.	15
4.21	Distribution of treatment characteristics with co-morbidity after	74
	phototherapy.	/+

List of figures

Figure No.	Titles	Page
1.1	Metabolic reactions of bilirubin pathway. Heme, biliverdin, bilirubin and conjugated bilirubin structures are indicated, as well as the relative by-products and enzymes of each reaction	3
2.1	Guidelines for exchange transfusion in infants of \geq 35 wk of gestation	11
4.1	Co-morbidity after phototherapy.	75
4.2	Distribution of neonatal jaundice admission history with co- morbidity.	75
4.3	Distribution of neonatal RH differences with co-morbidity.	76

CHAPTER ONE INTRODUCTION

1.1. Introduction

1.2. Background: Neonatal jaundice, the yellowish discoloration of the sclera and skin caused by hyperbilirubinemia, which is one of the most common conditions confronting neonatologists daily (**Rennie J et al, 2010**).

Neonatal jaundice a serious condition that may result in fatal complications if not treated properly and in a timely manner. This condition is caused by an excess of bilirubin in the blood, a yellow substance created from the degradation of red blood cells, which give bilivirdin and ferrous bilivridin then metabolize to bilivirubin. Bilirubin is broken down by the liver in a healthy adult by binding to albumin and being excreted as bile. Neonates in the first few days after birth produce 6 to 8 mg/kg/24h, more than twice as much as adults, due to the increased red blood cell turnover rate. Bilirubin production usually declines 10 to 14 days after birth, for this reason, the risk of jaundice and complications resulting from the hyperbilirubinemia is highest in the few days directly following birth(Vaez A,2016).

1.3. Incidence/prevalence: Jaundice is the most common condition requiring medical attention in newborn babies, and about 50% of term and 80% of preterm babies develop jaundice in the first week of their life (Kumar R, 1999). Jaundice is also a common cause of re-admission to hospital after early discharge of newborn babies. It usually appears 2 to 4 days after birth and disappears 1 to 2 weeks later, usually without the need for treatment (Gale R et al, 2001).

1.4. Epidemiology: Hyperbilirubinemia is one of the most common causes of morbidity in newborns worldwide, and the most frequent cause of hospitalization or readmission for special care in the 1st week of life (YICSSG, 2008; Burke B et al, 2009; NIHCE, 2017;).

Recent global estimates suggest that every year, roughly 1.1 million babies would develop severe hyperbilirubinemia and the vast majority reside in sub-Saharan Africa and South Asia (**Bhutani V et al, 2013**). Available evidence also shows that severe hyperbilirubinemia, with or without bilirubin encephalopathy, is associated with substantial mortality and long-term morbidities in low- and middle-income countries (LMICs), (**Olusanya B et al,2014; Slusher T and Olusanya B, 2012; Mwaniki M et al, 2012; Maulik P and Darmstadt G, 2007**).

Over 60% of all newborns develop neonatal jaundice (NNJ), a physiologic condition characterized by yellowish discoloration of the skin and conjunctiva as a consequence of increased levels of serum bilirubin during the first week of life (Olusanya B et al, 2014; Burke **B** et al, 2009). Neonatal jaundice is usually benign, but in some cases, it progress to severe hyperbilirubinemia, acute bilirubin can encephalopathy (ABE) and kernicterus/chronic bilirubin encephalopathy (CBE), (YICSSG, 2008; Volpe J,2008; Maisels MJ,2015). Acute bilirubin encephalopathy and Chronic bilirubin encephalopathy are largely preventable if severe hyperbilirubinemia is identified early and treated promptly with effective phototherapy or, for hazardous cases, exchange transfusion. Guidelines for managing jaundice have been proposed by the American Association of Pediatrics (AAP), the UK National Institute for Health and Care Excellence (NICE) and others (WHO, 2014; WHO, 2013; Olusanya B et al, 2016).

With improvements in prevention and treatment, the number of cases of severe hyperbilirubinemia in high-income countries (HICs) has decreased markedly since the 1990s. It is assessed by population-based studies and registries, the incidence of severe hyperbilirubinemia in

HICs is currently estimated to be about 31.6/100,000 live births (95% CI 11.8-51.3), while the incidences of ABE and CBE have been estimated as being in the range of 1.0-3.7 and 0.4-2.7/100,000 live births, respectively(**Bhutani V**, 2012; **Bhutani V** et al, 2010).

1.5. Bilirubin metabolism Pathway: Bilirubin is the end product of heme catabolism in the intravascular compartment. About 80% of bilirubin results from the degradation of erythrocyte hemoglobin in the reticulo-endothelial system. The remaining (20%) derives from degradation of myoglobin and other heme-containing proteins, such as cytochromes, and inefficient erythropoiesis in bone marrow (London et al., 1950). Heme oxygenase degrades heme into biliverdin, which is then reduced to UCB by the enzyme biliverdin reductase (Figure 1.1), (Vodret S, 2016).

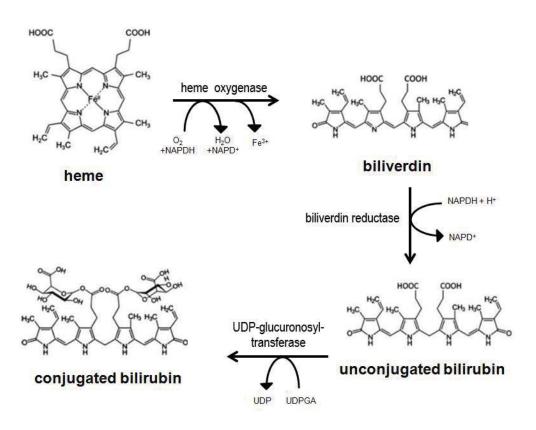


Figure 1.1 .Metabolic reactions of bilirubin pathway.

Heme, biliverdin, bilirubin and conjugated bilirubin structures are indicated, as well as the relative by-products and enzymes of each reaction (Vodret S, 2016).

1.6. Aim of the study:

The aim of the current study to assess the comorbidities of phototherapy used in neonatal jaundice in Diyala governorate of Iraq.