

Republic of Iraq Ministry of Higher Education and Scientific Research University of Diyala College of Medicine

Detection of *exo*A and *opr*D genes expression in clinical isolates of *Pseudomonas aeruginosa*

A Thesis

Submitted to the Council of the College of Medicine-University of Diyala in partial fulfillment of the requirements of the degree of Master in Medical Microbiology

By

Ruqaiya Mahmoud Saleh

B.Sc. Biology (2005) - College of Science-University of Diyala

Supervised By

Assistant Professor Dr. Anfal Shakir Motib

2021 A.D.

1443 A.H.

بسم الله الرَّحْمَنِ الرَّحِيم ﴿ وَيَسْئَلُونَكَ عَنِ ٱلرُّوحَ قُلِ ٱلرُّوحُ مِنْ أَمْرِ رَبِّي وَمَا أُوتِيتُم مِّنَ ٱلْعِلْم إِلَّا قَلِيلًا ﴾

صدق الله العظيم آية (٨٥) من سورة الإسراء

Dedication

I dedicate this work to ...

My martyr brother, may Allah have mercy upon his soul... Hafez

The candle of my life, Allah prolongs her life... **My Mother**

My partner and support...My Husband... Ahmed

My soul and the secret of my smile... My children...**Haidar, Ali, and Noor**

My childhood friendRehab

Ruqaíya

Acknowledgments

First and foremost I must thank **Allah** for providing me the strength to finish this study. All thanks are to Almighty Allah, who led me in the right direction and gave me the courage to perform this research work.

My deepest gratitude to my supervisor, Ass.Prof Dr. Anfal Shakir Motib for her supervision and choosing of this project, scientific guidance, and support during the period of the study.

Special thank goes to the Dean of College of Medicine and to all staff of the Microbiology Department for providing available facilities and valuable information throughout the study period.

Also, I would like to express my deepest gratitude and faithful thanks to the staff of the Amen Medical laboratory for his help and Kind support during my work.

Also, many thanks to the employees of Baqubah Teaching Hospital, Al-Batoul Teaching Hospital, and Consultative Clinic for helping me collect samples for research purposes.

Finally, I would never have been able to finish my thesis without the help from friends, and support from my family and husband.

Summary

Pseudomonas aeruginosa has a wide spectrum of antibiotic resistance, the global problem in recent days is the increasing rate of multidrugresistance, which has resulted in the wide use of medical therapy. It was considered as one of the greatest public pathogens in hospitals, making it to be the main causative agent of nosocomial infections, it widely contributed to severe opportunistic infections, particularly in immune-compromised patients.

The current study includes the diagnosis of 24 isolates of *P. aeruginosa* out of (100) different clinical specimens from wounds, burns, vagina, and urinary tract infections between the ages of (1-69 years), from both genders. The specimens were collected from inpatients and patients who visited Baqubah Teaching Hospital, Al-Batoul Teaching Hospital and Consultative Clinic / Diyala Governorate, during the period from October 2020 to January 2021.

All specimens were diagnosed based on bacteriological and biochemical tests. From (100) specimens, 24(24%) specimens were *P*. *aeruginosa*, 76(76%) specimens were other bacterial types. All isolates of *P*. *aeruginosa* were confirmed via tests done by the VITEK2 compact system. These isolates gave positive results for oxidase, catalase, citrate utilization tests. All the isolates were producers of hemolysin. They gave negative results to indole, methyl red, and voges-proskauer tests. The results of the pyocyanin, urease, lipase, protease, and gelatinase tests varied between negative and positive.

Drug susceptibility tests 24 isolates of *P. aeruginosa* were studied by the disk diffusion method against (12) antibiotics and the result showed a different percentage of resistance to each antibiotic as fellow: Imipenem, Meropenem,Ceftazedim, Cefipime, Levofloxacin, Norfloxacin, Ciprofloxacin, Gentamycin, Netilmicin, Azetreonam, Piperacillin/Tazobactam and Ticarcillin/ Clavulanate (50%, 41.7%, 25%, 75%, 58.3%, 50%, 50%, 58.3%, 50%, 75%, 66.7%, and 66.7%) respectively.

As for the molecular study, twelve isolates were DNA extracted by DNA extraction kit. Measurement of the concentration of DNA samples was done by Quantus Fluorometer. The concentrations of all twelve DNA samples were between (14-19)ng/µl. The PCR technique was used for screening the four virulence factors genes (*bla*NDM-1, *pelA*, *oprD*, *exoA*) of DNA of the twelve isolates of *P. aeruginosa*. The result showed that 10(83.3%) isolates were PCR-positive for *exoA* and *oprD*, while 2(16.7%) were PCR-negative. The determination of *pelA* in the twelve DNA of *P. aeruginosa* revealed that PCR was positive in 4(33.3%) isolates and 8(66.7%) were PCR-negative. While the result of the *bla*NDM-1 gene showed that the twelve DNA of *P. aeruginosa* 12(100%) were PCR-negative.

Regarding the study of gene expression, twelve isolates of *P*. *aeruginosa* were cultured on LB broth and treated by Meropenem. The antibiotic broth for studying the gene expression of *exo*A and *opr*D, and it was compared their gene expression in different body sites. Relative quantification expression ratios of the *exo*A and *opr*D of the cDNA were measured in comparison to the housekeeping gene *trp*E. A marked increase in gene expression was also found after treating the bacterial suspension with the antibiotic Meropenem. The mean value was high for *opr*D in bacterial treated than untreated with no significant difference (*P*>0.05) between bacterial treated than untreated with a highly significant difference (*P*<0.05) between bacterial treated than untreated with a highly significant difference (*P*<0.05) between bacterial treated than untreated antibiotic, can explain the resistance of bacteria to antibiotics.

The highest mean value of the *exo*A was in wound specimens, while the least mean value of it was in urine specimens. Based on the *opr*D, the highest mean value was in burn specimens, while the least mean value was in wound specimens.

Table of Contents

Title		Page No.
Summary		I-III
Table of contents		IV
List of tables		VIII
List of figures		IX
List of abbreviations		X
Chapter C	One : Introduction	1-3
Chapter Two : Literature Review		4
2.1	Pseudomonas aerugenosa	4
2.2	Classification of Pseudomonas aeruginosa	5
2.3	Diagnosis of Pseudomonas aeruginosa	6
2.3.1	Molecular methods	6
2.4	Epidemiology of Pseudomonas aeruginosa	9
2.5	Antibiotic resistance in Pseudomonas aeruginosa	10
2.6	Pathogenicity of Pseudomonas aeruginosa	13
2.7	Virulence factors of pseudomonas aeruginosa	17
2.8	The cell-associated virulence factors	18
2.9	Secretion virulence factors (extracellular factors)	19
2.10	Genomic of Pseudomonas aeruginosa	21
2.11	Virulence genes in Pseudomonas aeruginosa	23
Chapter Three: Materials & Methods		26
3.1	Materials	26
3.1.1	Apparatus and equipment	26
3.1.2	The chemicals and biological materials	28
3.1.3	Culture media	29
3.1.4	Antibiotics	30

3.1.5	Antibiotic powder	30
3.1.6	Kits	31
3.2	Methods	32
3.2.1	Media preparation and other technique sterilization	32
3.2.2	Laboratory prepared culture media	32
3.2.2.1	Pseudomonas agar base	32
3.2.2.2	Blood agar medium	32
3.2.2.3	MacConkey agar	33
3.2.2.4	Nutrient agar	33
3.2.2.5	Nutrient broth +15% glycerol	33
3.2.2.6	Brain heart infusion broth	33
3.2.2.7	Egg-yolk agar	33
3.2.2.8	Skim milk agar	34
3.2.2.9	Gelatin liquefaction medium	34
3.2.2.10	Urea agar medium	34
3.2.2.11	Muller Hinton agar	34
3.2.2.12	LB broth	35
3.2.3	Preparation of solutions	35
3.2.3.1	McFarland turbidity standard	35
3.2.3.2	Normal saline solution	35
3.2.4	Collection of patient's samples	35
3.2.5	Isolation of Pseudomonas aeruginosa	36
3.2.6	Identification of clinical P. aeruginosa isolates	36
3.2.6.1	Biochemical examination	36
3.2.6.1.1	Catalase test (slide test)	36
3.2.6.1.2	Oxidase test	37
3.2.6.1.3	IMViC tests	37
3.2.6.1.4	Triple sugar-iron (TSI) test	38

3.2.6.1.5	Grown at 42°C test	38
3.2.6.2	VITEK2 apparatus system	38
3.2.7	Preservation of bacterial isolates	39
3.2.7.1	Short-period preservation	39
3.2.7.2	Long-period preservation	39
3.2.8	Antibiotics susceptibility (Kirby-Bauer method)	39
3.2.8.1	Antimicrobial agents used	40
3.2.9	Molecular Study of Pseudomonas aeruginosa	40
3.2.9.1	DNA extraction by extraction kit	40
3.2.9.2	Quantitation and purity of DNA	42
3.2.9.3	Primer preparation	42
3.2.9.4	Reaction setup and PCR program	43
3.2.9.5	Agarose gel electrophoresis	44
3.2.9.5.1	Preparation of agarose	44
3.2.9.5.2	The casting of the horizontal agarose gel	45
3.2.9.5.3	DNA loading	45
3.2.10	Gene expression	45
3.2.10.1	Preparation control broth	45
3.2.10.2	Preparation antibiotic broth	45
3.2.10.3	RNA purification of the (control, antibiotic)broth	46
3.2.10.4	Determine RNA yield	47
3.2.10.5	Primer preparation	48
3.2.10.6	Reaction setup and thermal cycling protocol	48
3.2.11	Statistical analysis	49
Chapter Four: Results		50
4.1	Specimens collection	50
4.2	Isolation and Identification of P. aeruginosa	50
4.3	Biochemical tests and virulence factors	51

4.4	Confirmation of <i>P. aeruginosa</i> identified	52
4.5	Antibiotics susceptibility test of <i>P. aeruginosa</i> isolates	54
4.6	Molecular study of <i>P. aeruginosa</i>	56
4.6.1	Concentration and purity of DNA	56
4.6.2	Detection of some virulence genes by PCR	56
4.6.2.1	Detection of <i>bla</i> NDM-1	57
4.6.2.2	Detection of <i>pelA</i>	57
4.6.2.3	Detection of <i>exo</i> A	58
4.6.2.4	Detection of oprD	58
4.7	Gene expression study	59
4.7.1	Gene expression of the <i>opr</i> D and <i>exo</i> A	60
Chapter j	five: Discussion	63
Chapter j 5.1	Specimens collection	63 63
<i>Chapter 5</i> .1 5.2	Specimens collection Antibiotics susceptibility test of <i>P. aeruginosa</i> isolates	63 63 63 64
Chapter J 5.1 5.2 5.3	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa	63 63 63 64 69 69
Chapter J 5.1 5.2 5.3 5.3.1	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa Molecular detection of different genes	63 63 64 69 69
Chapter J 5.1 5.2 5.3 5.3.1 5.3.2	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa Molecular detection of different genes Gene expression study	63 63 64 69 69 74
Chapter J 5.1 5.2 5.3 5.3.1 5.3.2 Chapter J	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa Molecular detection of different genes Gene expression study Six: Conclusions & Recommendations	63 63 64 69 69 74 79
Chapter J 5.1 5.2 5.3 5.3.1 5.3.2 Chapter J 6.1	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa Molecular detection of different genes Gene expression study Six: Conclusions & Recommendations Conclusions	63 63 64 69 69 74 79 79
Chapter J 5.1 5.2 5.3 5.3.1 5.3.2 Chapter J 6.1 6.2	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa Molecular detection of different genes Gene expression study Six: Conclusions & Recommendations Conclusions Recommendations	63 63 64 69 69 74 79 80
Chapter J 5.1 5.2 5.3 5.3.1 5.3.2 Chapter J 6.1 6.2 Appendic	Five: Discussion Specimens collection Antibiotics susceptibility test of P. aeruginosa isolates Molecular study of Pseudomonas aeruginosa Molecular study of Pseudomonas aeruginosa Molecular detection of different genes Gene expression study Six: Conclusions & Recommendations Conclusions Recommendations	63 63 63 64 69 69 74 79 80 81

List of Tables

Table No.	Table Title	Page No.
(3-1)	The apparatus and equipment that was used in the experimental study.	26
(3-2)	The chemical and biological materials were used in the experimental study.	28
(3-3)	The culture media were used in the experimental study.	29
(3-4)	The antibiotic disks were used in the experimental study.	30
(3-5)	The antibiotic powder was used in the experimental study.	30
(3-6)	The kits that were used in the experimental study.	31
(3-7)	Volume and concentration of primer.	42
(3-8)	The sequence of primers of virulence genes used in PCR reaction	43
(3-9)	PCR reaction components and volumes.	43
(3-10)	PCR program used in the current study.	44
(3-11)	RNA Concentration (ng/µl)	47
(3-12)	Material of RT-qPCR technique.	49
(3-13)	Amplification steps of the gene expression of RT-qPCR technique.	49
(4-1)	Biochemical tests and virulence factors of of <i>P. aeruginosa</i> .	51
(4-2)	Biochemical tests results of <i>P. aeruginosa</i> by VITEK2 compact system	52
(4-3)	Comparative bacterial types with infection sites, diseases, and anthropometric characters of patients are calculated by X^2 test.	53
(4-4)	Frequency and percentage of sensitivity and resistance of antibiotics are calculated by X^2 test.	55
(4-5)	Frequency and percentage of genes are measured by conventional PCR for 12 isolates are calculated by X^2 test.	56

List of Figures

Fig.	Figure Title	Page
No.	i igure i ute	No.
(2-1)	The basic theory of real-time PCR using the SYBR® Green	8
	technique.	
(2-2)	Antibiotic target sites.	13
(2-3)	P. aeruginosa Pathogenesis and major virulence factors.	18
(2-4)	The five developmental stages in biofilm formation.	21
(4-1a)	Gel electrophoresis of <i>bla</i> NDM-1 in <i>P. aeruginosa</i> in TAE buffer, stained with ethidium bromide using 100V for approximately 75min. M: 100bp ladder marker; lanes all isolates negative results of <i>bla</i> NDM-1 PCR product.	57
(4-1b)	Gel electrophoresis of <i>pel</i> A in <i>P. aeruginosa</i> in TAE buffer, stained with ethidium bromide using 100V for approximately 75min. M: 100bp ladder marker; lanes 1,4,7,8,9,10,11,12 negative results; lanes 2,3,5,6: 116bp of <i>pel</i> A PCR product.	57
(4-1c)	Gel electrophoresis of <i>exoA</i> in <i>P. aeruginosa</i> in TAE buffer, stained with ethidium bromide using 100V for approximately 75min. M: 100bp ladder marker; lanes 1,9 negative results; lanes 2,3,4,5,6,7,8,10,11,12 :397bp of <i>exoA</i> PCR product.	58
(4-1d)	Gel electrophoresis of <i>opr</i> D in <i>P. aeruginosa</i> in TAE buffer, stained with ethidium bromide using 100V for approximately 75min. M: 100bp ladder marker; lanes 1,9 negative results; lanes 2,3,4,5,6,7,8,10,11,12 : 193bp of <i>opr</i> D PCR product.	59
(4-2)	Expression of <i>exoA</i> and <i>oprD</i> in <i>Pseudomonas aeruginosa</i> that isolated from different infection sites are calculated by <i>F test</i> for 12 isolates.	61
(4-3)	Comparative <i>exo</i> A and <i>opr</i> D genes with antibiotic treating.	62

List of Abbreviations

Symbols	The meaning
CDC	Central for Disease Control
CF	Cystic fibrosis
ISS	International space station
MDR	Multi Drug Resistance
XDR	Extensively Drug Resistance
PDR	Pan Drug Resistance
PCR	Polymerase Chain Reaction
RT-qPCR	Quantitative real-time Polymerase Chain Reaction
DNA	Deoxyribonucleic acid
RNA	Ribonucleic acid
ITUs	Intensive treatment unit
CCUs	Critical care unit
ICUs	Intensive care unit
WHO	World Health Organization
QS	Quarium Sensing
NI	Nosocomial Infection
UTIs	Urinary Tract Infection
PID	Pelvic Infection Diseases
IUD	Intrauterine device
LPS	Lipopolysaccharide
EPS	Exopolysaccharide
CLSI	Clinical and Laboratory Standards Institute
IS	Insertion sequence
ETA	ExotoxinA
ADP	Adenosine diphosphate
NDM	New Delhi Metallo
PFGE	Pulsed-field gel electrophoresis
bp	Base pair
μg	Microgram
μL	Microliter
UV	Ultraviolate

One

1.1 Introduction

Pseudomonas aeruginosa is a pervasive environmental bacteria. It has appeared as an opportunistic pathogen of main clinical relevance (Bassetti *et al.*, 2018). It was considered as one of the greatest public pathogens in hospitals, and it widely contributed to severe opportunistic infections, particularly in immune-compromised patients (Pachori *et al.*, 2019). According to the Centre for Disease Control, more than 51,000 clinical *P. aeruginosa* infections were reported each year in the USA with 400 deaths per year (CDC, 2018).

It was reported that *P. aeruginosa* has a wide spectrum of antibiotic resistance, making it to be the main causative agent of nosocomial infections (Moradali *et al.*,2017). This bacterium is a facultative anaerobic Gramnegative that colonizes a various collection of habitats, including surgical equipment and catheters (Rasamiravaka *et al.*, 2015). It is one of the most common pathogens in intensive care units (ICUs) causing severe respiratory, urinary tract infections, bacteremia, wound sepsis. As well, it is the main cause of life-threatening infections in burn patients (Dou *et al.*, 2017).

It is mainly dangerous for patients with severe wounds, cystic fibrosis (CF), and cancer. The infection strategy of *P. aeruginosa* depends on the production of numerous cell-associated and secreted molecules, including various proteases and toxins (Moradali *et al.*, 2017). *P. aeruginosa* can cause life-threatening infections in patients with compromised immune system. Hence, it is a leading cause of clinical infections all over the world, especially in patients admitted to critical care units recovering from post-operative surgical wounds, burns, traumas, and pre-existing lung diseases such as cystic fibrosis (Baker *et al.*, 2016).

The pathogenicity of *P. aeruginosa* was caused by some virulence factors, which are modulated by the expression of different genes including, *oprI*, *oprD*, and *toxA*. It was shown that there is a correlation between particular virulence factors and the distinct manifestations of *P. aeruginosa* infections (Nikbin *et al.*, 2012). The global problem in recent days is the increasing rate of multidrug-resistance (MDR) of *P. aeruginosa* strains which has resulted in the wide use of medical therapy (Dogonchi *et al.*, 2018). *P. aeruginosa* infections can become established at various host sites and progress into life threatening acute or chronic infections (Lorenz *et al.*, 2017).

The flexibility and complication of the huge genome of *P. aeruginosa* (6.3Mbp) determine the evolutionary adaptations of this species (Cristina and Eusébio, 2013). It consists of a conserved essential genome with strain-specific districts that allow strains to gain or shed genomic fragments in an extension of environments to boost survival traits (Wendt and Joon-Heo, 2016). It was demonstrated that *P. aeruginosa* can catch and integrate clusters of genes that impart resistance to antibiotics and increase virulence. It was shown that this resistance is a result of the acquisition of mobile elements such as class 1 integrons, which are the antibiotic cassettes associated with them and lead to increased multi-drug-resistant *P. aeruginosa* (Ebrahimpour *et al.*, 2018). Gene expression has been defined as the "production of a visible phenotype of a gene which is usually determined by protein synthesis" (Alberts *et al*, 2002).

The term 'gene expression' is often used with mRNA measurements synonymously. In addition, most studies often assume that single genes were associated with individual gene products for simplicity, while in fact, individual genes may ultimately lead to a variety of transcripts and proteoforms (Aebersold *et al.*, 2018; Salovska *et al.*, 2020). Furthermore,

2

RNA–RNA interactions of partly overlapping mRNA transcripts may lead to post-transcriptional regulatory events by modulating the interaction of RNAbinding proteins and impact gene expression levels (Gilet *et al.*, 2020; Toledo-Arana and Lasa, 2020).

It was shown that there are variances between clinical isolates of P. *aeruginosa* that were isolated from different infection sites of human body in the gene expression of different genes which play an important role in the pathogenicity of this bacterium (Willcox *et al.*, 2008). *opr*D is gene encoded for a Carbapenem-specific porin whose reduction or absence causes primary Carbapenem resistance. Porins are three-partite protein channels in P. *aeruginosa's* outer membrane that selectively transfer hydrophilic molecules based on their size and charge (Courvalin *et al.*, 2010). ExotoxinA is a toxin that inhibits protein synthesis by causing ADP ribosylation of eukaryotic elongation factor, which is similar to the mechanism of feat of diphtheria poison (Hossein *at el.*, 2015).

Therefore, it is important to study the gene expression of different genes that play a role in virulence in *P. aeruginosa* isolated from different clinical isolates. The aim of the current study, determine the gene expression of different genes including *bla*NDM-1, *pelA*, *exoA*, and *oprD* in *Psudomonas aeruginosa* that were isolated from burn, wound, urine, and vagina infections. The steps to verify the aim are as follows:

1. The isolation and identification of *P. aeruginosa* from different clinical specimens.

2. Determine the antibiotic susceptibility of *P. aeruginosa* isolates.

3. Detection of some virulence factors genes.

4. Determine the gene expression of the genes in *P. aeruginosa* that were isolated from different infection sites.