Republic of Iraq

Ministry of Higher Education and Scientific Research University of Diyala - College of Medicine

Efficacy of Measles Vaccine and the Attributable Factors among Vaccinees in Diyala Province

A thesis

Submitted to the council of the College of Medicine-University of Diyala in partial fulfillment for the requirements of the degree of Master of Science in Medical Microbiology

> By Raghad Emad Salman B.Sc.

> > Supervised by

Prof. Dr. Abdulrazak SH. Hasan Ph. D. Med. Microbiology Prof. Dr. Nadhim Ghazal Noaman Ph. D. Comm. Medicine, MFPH

2022 A.D.

1443 A.H.

بِسْمَ ٱللَّهِ ٱلرَّحْمَٰنِ ٱلرَّحِيم (وَقُل رَّبِّ زِدْنِي عِلْمًا) صَدَقَ اللهُ الْعَظِيمْ سورة طه الآية 114

Supervisor Certification

We, certify that this thesis entitled (Efficacy of Measles Vaccine and the Attributable Factors among Vaccinees in Diyala Province)

prepared by (Raghad Emad Salman) at the College of

Medicine-University of Diyala was under my supervision as a

partial fulfillment of the requirements for the degree of Master of

Science in Medical Microbiology.

D-SA. Havan

13

Professor

Dr. Abdulrazak SH. Hasan

Professor

Dr. Nadhim Ghaza Noaman

Given the available recommendation, I forward this thesis for debate by the examining committee.

Signature

Professor Dr. Luma Taha Ahmed

Head of Microbiology Department

College of Medicine - University of Diyala

Committee Certification

We, as the examining committee, certify that we have read this thesis and examined the student (**Raghad Emad Salman**) in and its contents, found it adequate as a thesis for the Master Degree of Science in Medical Microbiology.

Professor Dr. ATheen Abdul RAZZAQ

Chairman

Professor D

10

Member

A st. Nasan Professor

Dr. Abdulrazak SH. Hasan

(Supervisor)

Dr.

Professor

Dr. Nadhim Ghazal Noaman

(Supervisor)

Approved by the Council of College of Medicine

The Dean

Professor Dr. Ismail Ibrahim Latif Date:

Dedication

То....

My first teacher, my first love, the most precious blessing in my life, who gave me encouragement, love and tranquility and who would have no life for me without her my dear mother

То....

The one who supporting and gave me strength when I thought of giving upmy dear father

То....

The shining stars in the sky of my life.... my sister Hadeel To....

My eyes.....my brothers Mohammed and Mofk

Raghad

Acknowledgements

Praise be to Allah

Iam express my thankful, to my esteemed supervisor, advisor, and mentor, Prof. Dr. Abdulrazak SH. Hasan for suggesting the subject and his scientific guidance throughout the study. Iam greatly grateful to his help, which helped me present this work in the right perspective,

Iam express my deepest gratitude to my co-advisor Prof. Dr. Nadhim Ghazal Noaman for his encouragement, inspiring advice and moral support in carrying out this thesis work.

Iam would also like to take this opportunity to thank the deanship College of Medicine, University of Diyala; and the staff members of Microbiology Department.

Iam very much thankful to Assist. Lec. Hiba Hadi Rashid

Iam offer a personal expression of gratitude to all staff members of Al-Abara Healthcare Center / Diyala Directory of Health, for their kind help in collecting samples.

A final word, I would like to thank each and every person who have been a source of support and encouragement and helped me to achieve my goal and complete my thesis work successfully.

Summary

Measles is a very contagious respiratory disease caused by measles virus that spreads through respiratory droplets. It is a vaccine preventable disease that can cause serious illness, lifelong complications and death. Measles virus (MeV), is a single-stranded, negative-sense, enveloped, non-segmented RNA virus of the genus *Morbillivirus* within the family *Paramyxoviridae*. Humans are the natural hosts of the virus; Measles virus vaccine is a live attenuated was developed since 1963. One vaccine dose is about 93% effective while two doses are about 97% effective at preventing measles. However, measles remains an important cause of child morbidity and mortality worldwide despite the availability of a safe and efficacious vaccine.

Measles cases surged in 2017, as multiple countries experienced severe and prolonged outbreaks of measles due to gaps in vaccination coverage. The resurgence of measles is of serious concern, with extended outbreaks occurring across regions, and particularly in countries that had achieved, or were close to achieving, measles elimination.

Therefore, this study aimed to explore the rate of measles cases among unvaccinated children in Diyala province through detection of anti-measles IgM. Beside the determination of the efficacy of measles vaccine in vaccinated children through detection of anti-measles IgG.

This is a cross sectional study conducted in Diyala province from 1stNovember 2020 to 20th October 2021. A total of 425 blood samples were collected from children (1-14) years of age including; children clinically suspected as having measles, vaccinated and unvaccinated groups as well as apparently healthy control. Those participants were allocated from primary health care centers. A special questionnaire form was pre-constructed for this purpose. The human privacy was respected by obtaining a child's parents' verbal consent. Furthermore, the study project was approved by the Scientific and Ethical Committee in the College of

Medicine- University of Diyala as well as the Scientific Committee of Diyala Health Directorate . Blood samples were collected from participants, the sera were separated. Anti-measles IgG(CD Creative Diagnostics) and IgM antibodies (MyBioSource-USA) were done using ELISA technique. Statistical analysis was done using SPSS version 27 and p values ≤ 0.05 were considered significant

The results showed that the rate of anti-measles IgM positivity rate among sick children was 15.6%. the majority of patients (23.3%) had 1.0 mIU/ml IgM concentration, while 8.9% of the patients had 4.0 mIU/ml IgM concentration. the highest mean \pm SD of IgM concentration was among children 5 years old. Furthermore, the mean \pm SD of IgM was unsignificantly higher in male (P = 0.600). Unsignificantly higher mean \pm SD of IgM was found among ruralees (P= 0.902).

Regarding the anti-measles IgG, the positivity rate among vaccinated children was 92.6% which was significantly higher compared to control 4.5% (P= 0.0001). Furthermore, the majority (41.5%) of vaccinated children had 30.0 mIU/ml IgG concentration, while 4.8% of vaccinated children had => 40.0 mIU/ml IgG concentration. the mean concentration \pm SD of IgG was significantly higher among children \geq 6 years old (P= 0.0001). The mean concentration \pm SD IgG was unsignificantly higher in male (P = 0.655). It was also unsignificantly higher among ruralees (P= 0.143). Furthermore, the mean \pm SD of IgG concentration (32.601±4.682) was significantly higher among children received 4 vaccine doses.

The mean \pm SD of platelets counts in measles vaccinated children (247.652 \pm 47.172) was significant higher compared to patients and control groups (P=0.0001). The mean \pm SD of Hb (g/dL) of vaccinated children 12.931 \pm 0.842 was significantly higher (P=0.0001). Also, the mean \pm SD of WBC count (Cell/CC x 10³) in vaccinated children 7.101 \pm 1.327 was significant lower compared to others (P= 0.0001). As well as the lymphocytes count (Cell/CC x 10³), results found that the mean \pm SD of vaccinated children was significantly higher compare to other groups (P= 0.0001). This study concluded that measles cases actually occurred among unvaccinated children that may be alarming emergence of outbreaks in these

areas. However, the protection rate of measles vaccine among fully vaccinated children was efficacious.

List of contents

	Contents	Page
	Committee Certification	
	Supervisor Certification	
	Dedication	
	Acknowledgements	
	Summary	Ι
	List of contents	IV
	List of tables	VIII
	List of figures	Χ
	List of abbreviation	XI
	Chapter One: Introduction	Page
1.1	Overview	1
1.2	Aims of study	5
	Chapter Two: Literature Review	Page
2.1	Historical review	6
2.1.1	An Introduction to the History of Measles	6
2.1.2	Definition of Measles	6
2.1.3	Etiologic Agent	7
2.1.4	Classification	8
2.1.5	Replication	8
2.1.6	Pathology and pathogenesis	10
2.1.7	Transmission	11
2.1.8	Clinical characteristics	11
2.1.9	Skin rash of measles and the role of immune	13
2.1.10	Complications	14
2.1.11	Diagnosis	15
2.1.12	Treatment	16
2.1.13	Control measures	17
2.1.13.1	Use of vaccine	17
2.1.13.2	Use of Immunoglobulin	17
2.1.14	Prevention	17
2.1.15	Epidemiology	18
2.1.15.1	Global	18
2.1.15.2	Local	20
2.2	Vaccine	21
2.2.1	Overview	21
2.2.2	History of vaccine	21

2.2.3	Definition of Measles Vaccine	23
2.2.4	Type of vaccine 24	
2.2.4.1	Live attenuated vaccine	24
2.2.4.2	Killed vaccine	24
2.2.5	Age of Routine Immunization	25
2.2.6	Efficacy of measles vaccine	26
2.2.7	Factors affecting the vaccine (vaccine failure)	27
2.2.7.1	Age	27
2.2.7.2	Genotype of virus	28
2.2.7.3	Cold chain	28
2.2.7.4	Reconstitution the dissolve	29
2.2.8	Reasons of unvaccinated children	29
	Chapter Three: Subjects, Materials	Page
	and Methods	
3.1	Subjects	30
1	Vaccinated group	30
2	Control group	30
3	Patient group	30
3.2	Materials	31
3.2.1	Measles vaccines	31
3.2.2	Laboratory equipments and instrument	31
3.2.3	Laboratory appliances	32
3.2.4	Laboratory diagnostic kits	33
3.3	Methods	33
3.3.1	Blood samples collection	33
3.3.2	Areas of sample collection	34
3.3.3	Determination of complete blood count	34
3.3.3.1	Principle of the test	34
3.3.3.2	Automated procedure	34
3.3.4	Detection of anti -Measles IgG antibodies	35
3.3.4.1	Test principle	35
3.3.4.2	Components of the Kit	36
3.3.4.3	Assay procedure (according to the CD	37
	Creative Diagnostics company)	
3.3.4.4	Interpretation of results	38
3.3.5	Detection of anti-Measles IgM antibodies	39
3.3.5.1	Test principle	39
3.3.5.2	Components of the Kit	40

3.3.5.3	Assay procedure (according to MyBioSource	40
	company)	
3.3.5.4	Interpretation of results	42
3.4	Statistical analysis	42
	Chapter Four: Results	Page
4.1	Description of study groups	44
4.1.1	Distribution of study groups by age	44
4.1.2	Distribution of study groups by gender	45
4.1.3	Distribution of study groups by residence	46
4.1.4	Distribution of study groups by child rank	46
4.1.5	Distribution of study groups by measles vaccine	47
4.1.6	Distribution of study groups by measles unvaccinated reason	47
4.1.7	Distribution of study groups by number of measles vaccine doses	48
4.1.8	Distribution of study groups by time of measles vaccine doses	49
4.1.9	Distribution of study groups by father educational level	49
4.1.10	Distribution of study groups by mother educational level	50
4.1.11	Distribution of study groups by concomitant disease	50
4.1.12	Distribution of study groups by previous hospitalization	51
4.1.13	Distribution of study groups by similar cases in the family	51
4.1.14	Distribution of patient group by clinical manifestations	52
4.2	Distribution of anti-measles virus antibodies	52
4.2.1	Distribution of anti-measles IgG positivity rate	52
4.2.2	Distribution of anti-measles IgG concentration	53
4.2.3	Distribution of anti-measles IgM positivity rate	54
4.2.4	Distribution of anti-measles IgM concentration	55
4.3	Association of anti-measles IgG concentration with variables	56

4.3.1	Age	56
4.3.2	Gender	58
4.3.3	Residence	59
4.3.4	Number of measles vaccine doses	60
4.3.5	Concomitant diseases	62
4.4	Association of anti-measles IgM	63
	concentration with variable	
4.4.1	Age	63
4.4.2	Gender	64
4.4.3	Residence	66
4.4.4	Number of measles vaccine doses	67
4.4.5	Concomitant diseases	68
4.5	Hematological indices	69
	Chapter Five: Discussion	
5	Discussion	71
5.1	Distribution of anti- measles IgG positivity	73
	rate	
5.2	Distribution of anti-measles IgG according to	77
	age	
5.3	Distribution of study MeV IgG according to	79
	gender	
5.4	Distribution of measles IgG according to	80
	residence	
5.5	Association of IgG with number of vaccine	81
	doses and timing	
5.6	Other factors	82
5.7	Distribution of study measles IgM positivity	83
	rate	
5.8	Distribution of measles IgM according to age	86
5.9	Distribution of measles IgM according to	87
	gender	
5.10	Distribution of measles IgM according	88
	residence	
	Conclusions and Recommendations	Page
	Conclusions	90
	Recommendations	91
	References	92
	Appendices	124
	الخلاصة والواجهة باللعة العربية	

List of tables

	Title	Page
3.1	Laboratory equipment and instrument used in this study	31
3.2	Laboratory appliances used throughout this study	32
3.3	Laboratory kits used in this study	33
3.4	Showed anti- Measles IgG ELISA kit components	36
3.5	Showed anti-Measles IgM ELISA kit components	40
4.1	Distribution of study groups by age	45
4.2	Distribution of study groups by gender	45
4.3	Distribution of study groups by residence	46
4.4	Distribution of study groups by child rank in the family	46
4.5	Distribution of study groups by measles vaccine	47
4.6	Distribution of study groups by measles unvaccinated reason	47
4.7	Distribution of study groups by doses of measles vaccine	48
4.8	Distribution of study groups by time of vaccine	49
4.9	Distribution of study groups by Father educational level	49
4.10	Distribution of study groups by Mother education level	50
4.11	Distribution of study groups by concomitant disease	50
4.12	Distribution of study groups by previous hospitalization	51
4.13	Distribution of study groups by of similar cases in the family	51
4.14	Distribution of study group by clinical manifestations	52
4.15	Distribution of study groups by anti-measles IgG positivity	53
4.16	Distribution of study groups by anti-measles IgG concentration	53

4.17	Distribution of study groups by anti-measles	55
4 18	Distribution of anti-measles IgM	55
	concentration in study groups	00
4.19	Distribution of anti-measles IgG positivity by	57
	age	
4.20	Distribution of anti-measles IgG	58
	concentration by age	
4.21	Distribution of anti-measles IgG positivity by	58
	gender	
4.22	Distribution of anti-measles IgG	59
	concentration by gender	
4.23	Distribution of anti-measles IgG positivity by	59
	residence	
4.24	Distribution of anti-measles IgG	60
	concentration by residence	
4.25	Distribution of anti-measles IgG positivity by	60
	number of doses	
4.26	Distribution of anti-measles IgG	61
	concentration by number of doses	
4.27	Distribution of anti-measles IgG positivity by	62
	Concomitant diseases	
4.28	Distribution of anti-measles IgG	62
4.00	concentration by concomitant disease	()
4.29	Distribution of anti-measles IgM positivity by	63
4.20	age Distribution of outine color IoM	(A
4.30	Distribution of anti-measies igivi	04
1 31	Distribution of ont mosslos IoM positivity by	65
4.31	gender	03
1 32	Distribution of anti-measles IgM	65
ч.32	concentration by gender	05
4 33	Distribution of ant-measles IgM positivity by	66
ч.55	residence	00
4.34	Distribution of anti-measles IgM	66
	concentration by residence	00
4.35	Distribution of ant-measles IgM positivity by	67
	number of doses	
4.36	Distribution of anti-measles IgM	68
	concentration by number of measles vaccine	
	doses	

4.37	Distribution of anti-measles IgM	68
	concentration by concommant disease	
4.38	Distribution of complete blood counts of study groups	70

List of figures

	Title	Page
2.1	(A) diagram of MeV virion (B) genome structure of MeV	8
2.2	measles virus replication	9
2.3	Global Measles Virus spread	19
4.1	Distribution of anti-measles IgG concentration in study groups	54
4.2	Distribution of anti-Measles IgM concentration in study groups	56

Abbreviation	Meaning
AAFP	American Academy of Family Physicians
AAP	American Academy of Pediatrics
Abs	Antibodies
ACIP	Advisory Committee on Immunization Practices
arbU/ml	Arbitrary units per milliliter
CBC	Complete blood count
CD	Cluster of differentiation
CDC	Center for Disease Control and Prevention
EDTA	Ethylene diamine tetraacetic acid
ELISA	Enzyme-Linked Immunosorbent Assay
EPI	Expanded Program on Immunization
F	Fusion protein
Н	Hemagglutinin protein
HRP	Horseradish peroxidase
IFN	Interferon
IgG	Immunoglobulin (G)
IgM	Immunoglobulin (M)
L	Large protein
М	Matrix protein
MCV	Measles-containing vaccine
MeV	Measles virus
MMR	Measles-Mumps-Rubella vaccine
Ν	Nucleoprotein
Р	Phosphoprotein
RNP	Ribonucleoprotein
SD	Standard deviation
SLAM	Signaling lymphocyte activation molecule
WHO	World Health Organization

Chapter One

1. Introduction

1.1.Overview:

Despite the availability of a safe and effective attenuated measles vaccine for more than 50 years, measles is still a major causes of children morbidity and mortality. In recent years, it has become a global public health problem, attributed to low vaccination coverage observed in different countries (Fadic and Repetto, 2019; Julik and Valle, 2017). According to 2017 estimates, measles resulted in approximately 110.000 deaths annually (Portnoy *et al.*, 2019). In 2019 there was measles virus resurgence causing more than 200,000 deaths, the deaths occurred mostly in children under 5 years of age, also those whom are most susceptible to complications of pneumonia, diarrhea and dehydration (Ikegame *et al.*, 2021).

Measles is a highly contagious systemic viral illness (Griffin, 2018). The causative agent of illness is Measles virus (MeV), which is a member of genus *Morbillivirus* within the *Paramyxoviridae* family, it has a negative-sense, single-stranded RNA genome (Coughlin *et al.*, 2017). The length of genome is16 kilobase, comprises six genes that encode eight viral proteins. The viral genome encapsidated by nucleoprotein (**N**), phosphoprotein (**P**) and large protein (**L**) forming the ribonucleoprotein complex (**RNP**), which surrounded by matrix (**M**) protein. Two of the proteins are non-structural proteins **V and C**, which expressed from an alternative RNA transcript of the P gene. Their function is primarily implicated in the prevention of type 1 interferon (**IFN**)-induced immune responses. Measles virus envelope glycoproteins include hemagglutinin (**H**) and fusion (**F**) proteins (Aref *et al.*, 2016). **H** protein is

responsible for the membrane fusion of virus and host cell and for the penetration of virus into the host cell (Ha *et al.*, 2017).

Transmission of measles virus occurs via person-to-person contact, as well as airborne spread. Infectious droplets from the respiratory secretions of a patient with measles can remain airborne for up to two hours and thus the disease may be transmitted in public spaces, even in the absence of person-toperson contact (Gans et al., 2018). The incubation period for disease usually lasts 10-14 days (from exposure to first symptoms appears), which generally consist of fever, cough, conjunctivitis, malaise and coryza. The characteristic morbilliform rash appears 2-4 days after onset of the prodrome. Usually, patients are contagious from about 4 days before eruption of the rash to 4 days after eruption, when the level of measles virus are highest in the respiratory tract. Prior to the appearance of the rash, bluish-white koplik's spots may be seen in the oral mucosa, which are pathognomonic for measles (Mondiale and de la Sante, 2017). Measles infects multiple systems and targets epithelial, white blood cell, and reticuloendothelial. Complications when they occur, largely arise by disruption of epithelial surface of different organ systems and immunosuppression. Approximately 30% of reported measles cases have one or more complications. In developed countries these include (7-9%) otitis media, (1-6%) pneumonia, (6%) diarrhea, blindness, and post-infectious encephalitis (1 per 1000 cases). The risk of serious measles complications is higher in adults and infants (Abad and Safdar, 2015).

Before the introduction of measles vaccine during 1960s, nearly every person had contracted measles during childhood (de Quadros *et al.*, 2008). With almost 30 million case of measles occurring every year globally (Zahoor, 2017). Person who was infected with measles acquired life-long immunity against measles (Adamo *et al.*, 2017). In the 1963, the live measles vaccine was introduced and consequently there was dramatical reduction of these numbers. The vaccine was initially given as one dose; however, due to an epidemic in 1989 to 1990, a second dose became the standard care for children aged 4 to 6 years (Vassantachart *et al.*, 2020).

The World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC), recommended maintaining high levels of immunization through universal routine vaccination of all children with two doses of a combined measles, mumps and rubella (MMR) vaccine (Abu-Elyazeed *et al.*, 2018). The MMR is a live attenuated vaccines, which are used to stimulate the immune system to protect against measles, mumps and rubella (Bailey and Sapra, 2021). The first dose of MMR vaccine is routinely given at 12 to 15 months of age, and the second dose is routinely given at 4 to 6 years of age. The WHO considers 9 months as optimal timing for the first dose of measles vaccination for protection of susceptible infants against measles in countries with high measles prevalence and this dose does not count as part of the 2-dose regimen (Pawaskar *et al.*, 2021).

In Iraq, the measles immunization schedule recommends measles vaccine for infants at nine months of age (Al-Shamsi *et al.*, 2010). During 2019 measles cases in Iraq was 3.799 (Knoema, 2019).

Annual measles outbreaks typically occurs in late winter and early spring in temperate climates, influenced by both meteorological and social variables and by population density understood both in relation to the inhabited area and public place, such as school. Countries in which widely used measles vaccine have experienced a marked decrease in the incidence of disease (Misin *et al.*, 2020). Measles outbreaks occur predominantly in unvaccinated individuals and are facilitated by low coverage as well as the high transmissibility of measles virus (Berry *et al.*, 2017). To prevent recurrent outbreaks of measles, 95% of population must be immune. Several attenuated measles vaccine are available

worldwide, either as single-virus vaccines, or in combination with other vaccine viruses, commonly with rubella and mumps (Naji *et al.*, 2020).

Measles remains a common illness in many countries especially in part of Asia and Africa, People from both developed and developing countries are seen to be targeted from this medical problem, but measles could be more perilous among children came from developing countries, and potentially leading to increase the mortality rate up to 15% (Aljothery *et al.*, 2020). Several factors can contribute to the severity of measles in developing countries, including poor nutrition, exposure to high doses of virus in crowded conditions, and an early age at which infants are exposed to the community at large (WHO, 2019). In addition to vitamin A deficiency, poor hygiene, inadequate immunization, and decreased immunity (Labib *et al.*, 2019).

2.1. Aims of the study:

For the best of our knowledge this is the first study in Diyala in this regard. Therefore, it was designed to achieve the following goals.

- **1.** Determination of the efficacy of measles vaccine among vaccinated children in Diyala province.
- 2. Explore the rate of measles cases among children in Diyala community.
- **3.** Assessing of effect of certain socio-demographic factors on vaccine efficacy.