

Republic of Iraq

Ministry of Higher Education and Scientific Research

University of Diyala

Collage of Science

Department of Biology

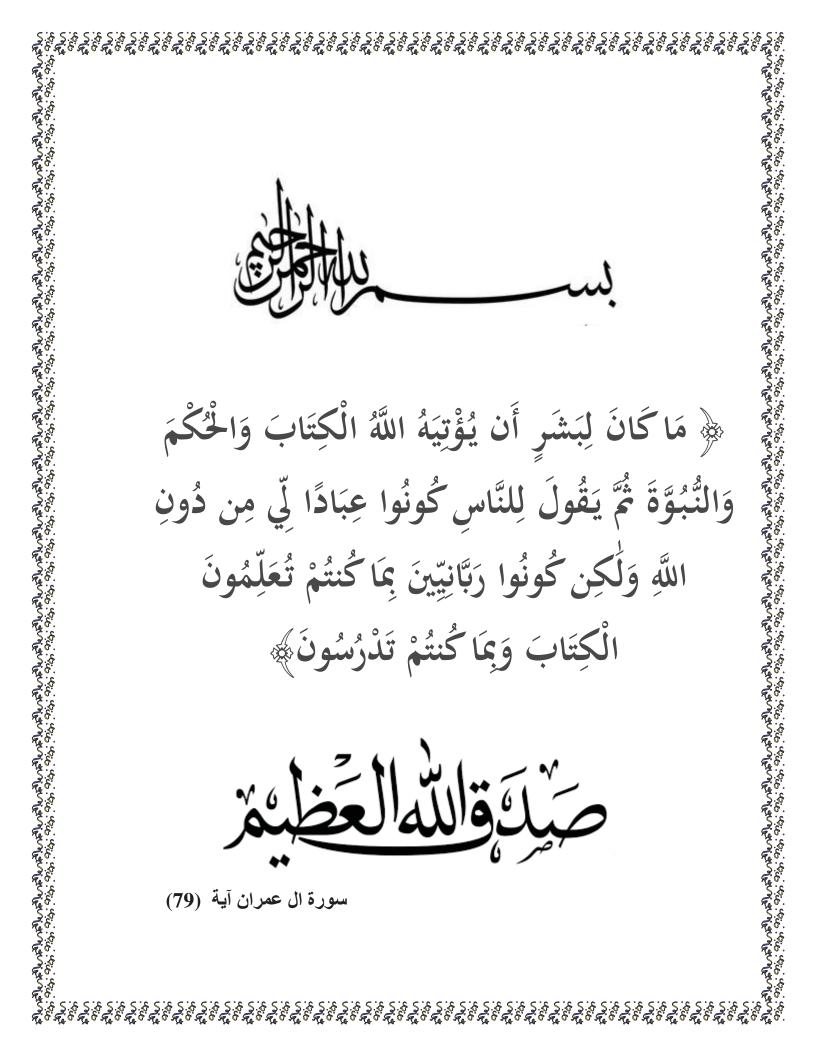
Preparation of Ag and ZnO nanoparticles from (*Musa* x *paradisiaca* L.) fruit peels and studying its inhibitory effects against bacterial infection of diabetic foot ulcer

A Thesis

Submitted to College of Science - University of Diyala in Partial Fulfillment of the Requirements for the Degree of Master in Biology

By

Ussama Asaed Fazel


B. Sc. Department of Biology / College of Science (2007)

Supervised by

Assist. Prof. Abbas Yaseen Hasan

2023 A.D

1444 A.H

Certification

I certify that this thesis entitled " **Preparation of Ag and ZnO nanoparticles from (***Musa x paradisiaca* **L.) fruit peels and studying its inhibitory effects against bacterial infection of diabetic foot ulcer**" has been conducted under my supervision in partial fulfillment of the requirements for the degree of M.Sc in Biology Sciences at the College of science, University of Diyala.

Signature

Name: Dr. Abbas Y. Hasan

Assistant Professor

Date: / / 2023

In view of the available recommendations I forward this thesis for debate

By the Examining Committee.

Signature:

Name: Prof. Dr. Ibrahim Hadi Mohammad

Head of department

Date: / / 2023

Scientific Amendment

I certify that the thesis entitled Inhibitory effect of **Preparation** of Ag and ZnO nanoparticles from (*Musa* x paradisiaca L.) fruit peels and studying its inhibitory effects against bacterial infection of diabetic foot ulcer presented by (Ussama Asaed Fazel) has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

Signature:

Name: Dr. Ahmed Jameel Sabr

Title: Assistant Professor

Date: / / 2023

Signature:

Name: D.Zahraa Jaafar Jameel

Title: Assistant Professor

Date: / / 2023

Linguistic Amendment

I certify that the thesis entitled Inhibitory effect of **Preparation of Ag** and **ZnO nanoparticles from** (*Musa x paradisiaca* **L**.) fruit peels and studying its inhibitory effects against bacterial infection of diabetic foot ulcer presented by (Ussama Asaed Fazel) has been evaluated scientifically, therefore, it is suitable for debate by examining committee.

الجسا فيسافك المحالي

Signature:

Name: Dr. Sanaa Nagem Abed Alhadidi

Title: Lucturer

Date: / / 2023

We certify that we have read this thesis entitled Inhibitory effect of **Preparation of Ag and ZnO nanoparticles from** (*Musa x paradisiaca* L.) fruit **peels and studying its inhibitory effects against bacterial infection of diabetic foot ulcer** we examined the student (Ussama Asaed Fazel) on its content and in what is related with it, and in our opinion it meets the standard of a thesis for the degree of master of science in Biology.

(Chairman)

Signature: Name: **Khazal Dh. Wadi Al-Jibouri** Title: Professor Date: / / 2023

Signature: Name: **Dr. Tahseen Hussein Mubarak** Title: Professor Date: / / 2023

(Member)

(Member)

ust wet wet wet wet

(Member/ supervisor)

Signature Name: **D.Abbas Y. Hasan** Title: Assistant Professor Date: / / 2023 Signature: Name: **Dr. Fatima Ramadan Abdul** Title: Assistant Professor Date: / / 2023

Approved by the council of the Faculty of College of Science, University of Diyala

Signature: Name: **Dr. Tahseen Hussein Mubarak** Title: Professor Date: / / 2023 (**Dean of the College of Science**)

ACKNOWLEDGEMENTS

I would like to start expressing my sincere appreciation to my teacher and supervisor Ass. Prof. Abbas Yaseen Hasan, for his guidance and encouragement during the preparation of this work. His expertise, insightful comments and useful advices have decisively contributed to my work. The words, really, are not enough to express my gratitude for all what he has done for me.

Also, I would like to thank the deanship, the head of the department and all the faculty of the department of biology at the college of science at Diyala University for being helpful with me. Special thanks and gratitude to doctor Ibraheem Hadi.

ليندما يغدم

I would like to express my sincere thanks to everyone who help me in one way or another, particularly, my teachers and the head of Msc. studies in the faculty.

Finally, I must express my appreciation and affection to my family and my friends.

૾૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱૱ ઌ૿ૡૢૻઌ૾ૡૢૢૢૢૢૢૢઌ૾ૡૢઌ૾ૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡૢઌૡ

Ussama

Summary

From November 2021 to January 2022, one hundred and twenty-five clinical specimens (diabetic foot ulcers) were collected from patients from Baquba Teaching Hospital. Samples were cultured on MacConkey and Blood agar media. The bacterial isolates were then initially diagnosed by using selective and differential media. Then biochemical tests were performed to confirm the diagnose of bacterial isolates and Identification of the isolates was confirmed using the VITEK-2 system. Based on the biochemical identification and the VITEK-2 the bacterial species were as following: *Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus* and *Staphylococcus epidermidis*. Which were first characterized by Carl Friedlander, Theodor Escherich, Carle Gessard, Alexander Ogston and Julius Rosenbach respectively.

Antimicrobial sensitivity was tested for all different bacterial isolates to 22 antimicrobials from each bacteria using disc diffusion method. The results showed that many bacterial isolates were multiple drugs resist (MDR). The following antibiotics were used: Amikacin, Amoxicillin, Aztreonam, Cefepime, Ceftriaxone, Chloramphenicol, Ciprofloxacin, Clarithromycin, Clindamycin, Gentamicin, Imipenem, Levofloxacin, Meropenem, Nitrofuration, Ofloxacin, Piperacillin, Rifampicin, Streptomycin, Tetracycline, Trimethoprim, Trimethoprim-sulfamethoxazole andVancomycin.

Zink Oxid (ZnO) and Silver (Ag) Nanoparticles (NPs) were characterized by using Atomic Force Microscopy (AFM), which indicated that the average size diameter of ZnO NPs was 45 nm while Ag NPs was 76.1nm, and UV-Vis showed of ZnO NPs were at the wavelength of 374 nm while Ag NPs was 426 nm, and also the characterization of ZnO NPs by X-ray Diffraction (XRD) was found to be 25.9 nm while Ag NPs was 27 nm, Fourier transform infrared (FTIR) spectroscopy showed different functional groups of biomolecules which were responsible for reduction and capping process, Scanning Electron microscopic (SEM) for ZnO NPs was 75.60 nm while Ag NPs was 71.69 nm.

Five concentrations (12.5, 25, 50,100 and 200) mg/mL of the *Musa* x *paradisiaca* extract were prepared to detect their inhibitory effect against multiple drugs resist (MDR). The results showed that the highest inhibition zone of isolates was at concentration 200 mg/ml and the lowest inhibition zone was at concentrate 12.5 mg/mL.

The antibacterial activity of Ag NPs against the selected multiple drugs resist (MDR) bacteria were determined by agar well diffusion method. It was observed that the growth of these bacteria was inhibited at 12.5 mg /mL. Ag NPs showed the highest diameter of inhibition zone at concentration 200 mg/ml against *S. aureus*, *S. epidermidis*, *P. aeruginosa*, *K. pneumonia* and *E. coli* reaching (20, 24, 15, 20, 18) mm respectively, while the ZnO NPs showed the highest diameter of inhibition zone at concentration 200 mg/ml against *S. aureus*, *S. epidermidis*, *P. aeruginosa*, *K. pneumonia* and *E. coli* reaching (20, 24, 15, 20, 18) mm respectively, while the ZnO NPs showed the highest diameter of inhibition zone at concentration 200 mg/ml against *S. aureus*, *S. epidermidis*, *P. aeruginosa*, *K. pneumonia* and *E. coli* reaching (29, 26, 31, 27, 28) mm respectively.

Finally, determination of MIC of Ag NPs was done by microdilution method. The MIC for Ag NPs against *S. aureus* was 8 μ g/ml, *S. epidermidis*, *P. aeruginosa* and *K. pneumoniae* was 4 μ g/ml, while *E. coli* was 2 μ g/ml, the determination of MIC of Zno NPs was *S. aureus* 4 μ g/ml, *S. epidermidis* and *E. coli* was 2 μ g/ml, *P. aeruginosa* 12.5 μ g/ml and *K. pneumoniae* was 8 μ g/ml.

Ш

List of contents

Content titles Page	Page
Summary	Ι
List of contents	III
List of tables	III
List of figures	III
List of abbreviations	III

Section NO.	Chapter one: Introduction	Page
	Introduction	1
	Chapter two: Literature Review	
2-1	Composition of the skin	3
2-2	Diabetis Foot ulcer	3
2-3	Bacterial associated with Diabetic Foot Ulcers	5
2-3-1	Gram-positive Bacteria	5
2-3-1-1	Staphylococcus aureus	5
2-3-1-2	Staphylococcus epidermidis	7
2-3-2	Gram Negative-Bacteria	7
2-3-2-1	Pseudomonas aeruginosa	7
2-3-2-2	Klebsiella pneumoniae	8
2-3-2-3	Escherichia coli	8
2-4	Antibiotic resistance of bacteria	9
2-4-1	Antibiotic Resistance Mechanisms	10
2-5	Multiple Drug Resistance of Bacteria	10
2-6	Medicinal plants	11
2-6-1	Musa x paradisiaca	12
2-7	Nanoparticles	15
2-7-1	Synthesis of nanoparticles	17

P

|||

ρ

2-7-2	Biosynthesis of Nanoparticles	17	
2-7-3	Nanoparticle Synthesizes by Plants	18	
2-7-4	Silver Nanoparticles (Ag NPs)	19	
2-7-5	Zinc Oxide Nanoparticles(ZnO NPs)	21	
	Chapter three: Materials and Methods		
3.1	Materials	23	
3.1.1	Laboratory Instruments and equipments	23	
3.1.2	Chemicals and Biological Materials	24	
3.1.3	The dyes	25	
3.1.4	The biochemical solutions	25	
3.1.5	Culture media	26	
3.1.6	The Antibiotics	27	
3.2	Methods	28	
3.2.1	Sterilization methods	28	
3.2.1.1	Wet heat sterilization methods (Autoclave)	28	
3.2.1.2	Dry heat sterilization methods	28	
3.2.2	Preparation of solutions and reagents	29	
3.2.2.1	Macfarland standard	29	
3.2.2.2	Gram stain solution	29	
3.2.2.3	Catalase Reagent	29	
3.2.2.4	Coagulase reagent	29	
3.2.2.5	Oxidase reagent	30	
3.2.2.6	Kovac's reagent	30	
3.2.2.7	Methyl Red Test	30	
3.2.2.8	Voges-Proskauer Test	30	
3.2.3	Preparations of culture media	31	
3.2.3.1	Ready-made media	31	
3.2.3.2	Laboratory-prepared media	31	
3.2.3.2.1	Blood agar medium	31	
3.2.3.2.2	MacConkey agar	31	
3.2.3.2.3	Urea agar	32	
3.2.3.2.4	Eosine Methlene Blue	32	
3.2.3.2.5	Mannitol Salt agar	32	
3.2.3.2.6	Mueller Hinton agar	32	
3.2.3.2.7	Chocolate agar	33	
2.2.3.2.8	Nutrient broth	33	
3.2.4	Collection of the samples	33	
3.2.5	Culturing of the samples	33	

3.2.6	Identification and laboratory diagnosis of bacteria isolates	34
3.2.6.1	Cultural examination	34
3.2.6.2	Microscopical examination	34
3.2.6.3	Identification by subculture on selective and differential media	34
3.2.6.4	Identification by Biochemical tests	35
3.2.6.4.1	Oxidase test	35
3.2.6.4.2	Catalase test	35
3.2.6.4.3	Coagulase test	35
3.2.6.4.4	IMViC test	36
3.2.6.4.4.1	Indole test	36
3.2.6.4.4.2	Methyl red test	36
3.2.6.4.4.3	Vogas-Proskauer test	37
3.2.6.4.4.4	Citrate Utilization test	37
3.2.6.4.4.5	Kligler iron agar test	37
3.2.7	Identification of bacterial isolates by using the VITEK-2 system	38
3.2.8	Isolates preservation	39
3.2.8.1	Short-term maintenance	39
3.2.8.2	Long-term storage	39
3.2.9	Antibacterial susceptibility test	39
3.2.10	Collection of <i>Musa</i> x <i>paradisiaca</i> samples	40
3.2.10.1	Preparation of <i>Musa</i> x <i>paradisiaca</i> fruit peel	40
3.2.10.2	Preparation the alcoholic extract of <i>Musa</i> x <i>paradisiaca</i>	40
3.2.10.3	Determination the antibacterial activity of <i>Musa</i> x <i>paradisiaca</i>	40
3.2.11	Biosynthesis of ZnO NPs from extract of Musa x paradisiaca	41
3.2.12	Biosynthesis of Ag NPs from extract of Musa x paradisiaca	41
3.2.13	Characterization of ZnO Nanoparticles and Ag Nanoparticles	41
3.2.14	Antibacterial activity of Ag NPs and ZnO NPs in vitro	43
3.2.15	Determination of the Minimum Inhibitory Concentration (MIC) of Silver and Zink oxide nanoparticles	43

	Chapter four: Results and Discussion	
4.1	Bacterial isolation and identification	45
4.1.1	Isolation of bacteria	45
4.1.2	Bacterial identification	45
4.1.2.1	Diagnosis of Staphylococcus aureus	46
4.1.2.2	Diagnosis of Staphylococcus epidermidis	47
4.1.2.3	Diagnosis of Pseudomonas aeruginosa	47
4.1.2.4	Diagnosis of Escherichia coli	48
4.1.2.5	Diagnosis of Klebsiella pneumoniae	48
4.1.3	Identification of isolated bacteria by Vitek 2 Compact	49
4.2	Antibiotic susceptibility test	49
4.2.1	Antimicrobial susceptibility test of <i>Staphylococcus</i> aureus and <i>Staphylococcus epidermidis</i>	50
4.2.2	antibiotic susceptibility test of <i>Escherichia coli</i> and <i>K. pneumoniae</i>	54
4.2.3	Antimicrobial susceptibility test of <i>Pseudomonas</i> <i>aeruginosa</i>	57
4.3	Antibacterial activity of plants extracts	61
4.3.1	Antibacterial activity of <i>Musa</i> x <i>paradisiaca</i> alcohol extract against pathogenic bacteria	61
4.4	Biosynthesis of Ag Nanoparticles by <i>Musa</i> x <i>paradisiaca</i> fruit peel extract	63
4.5	Characterization of Silver Nanoparticles	64
4.5.1	X-Ray Diffraction (XRD) analysis	64
4.5.2	Atomic Force Microscopy(AFM)	66
4.5.3	Scanning Electron Microscopy (SEM) analysis	67
4.5.4	UV-Vis Spectroscopy	68
4.5.5	Fourier-Transform Infrared Spectroscopy (FTIR) analysis	69
4.6	Biosynthesis of ZnO NPs by <i>Musa</i> x <i>paradisiaca</i> fruit peel extract	70

		71	
4.6.1	Characterization of zink oxide Nanoparticles	71	
4.6.2	X-Ray Diffraction (XRD) analysis	71	
4.6.3	Atomic Force Microscopy(AFM)	73	
4.6.4	Scanning Electron Microscopy (SEM) analysis	74	
4.6.5	UV-Vis Spectroscopy	75	
4.6.6	Fourier-Transform Infrared Spectroscopy (FTIR) analysis	76	
4.7.1	Antibacterial activity of Ag NPs against pathogenic bacteria	77	
4.7.2	Determination of Minimum Inhibition Concentration (MIC) of Ag nanoparticles	80	
4.7.3	Antibacterial activity of ZnO NPs against pathogenic bacteria	81	
4.7.4	Determination of Minimum Inhibition Concentration (MIC) of ZnO nanoparticles	84	
	Conclusion and Recommendation		
	Conclusions	86	
	Recommendation	87	
	References	88	

R		
	VII	ρ
		$\overline{\mathbb{C}}$

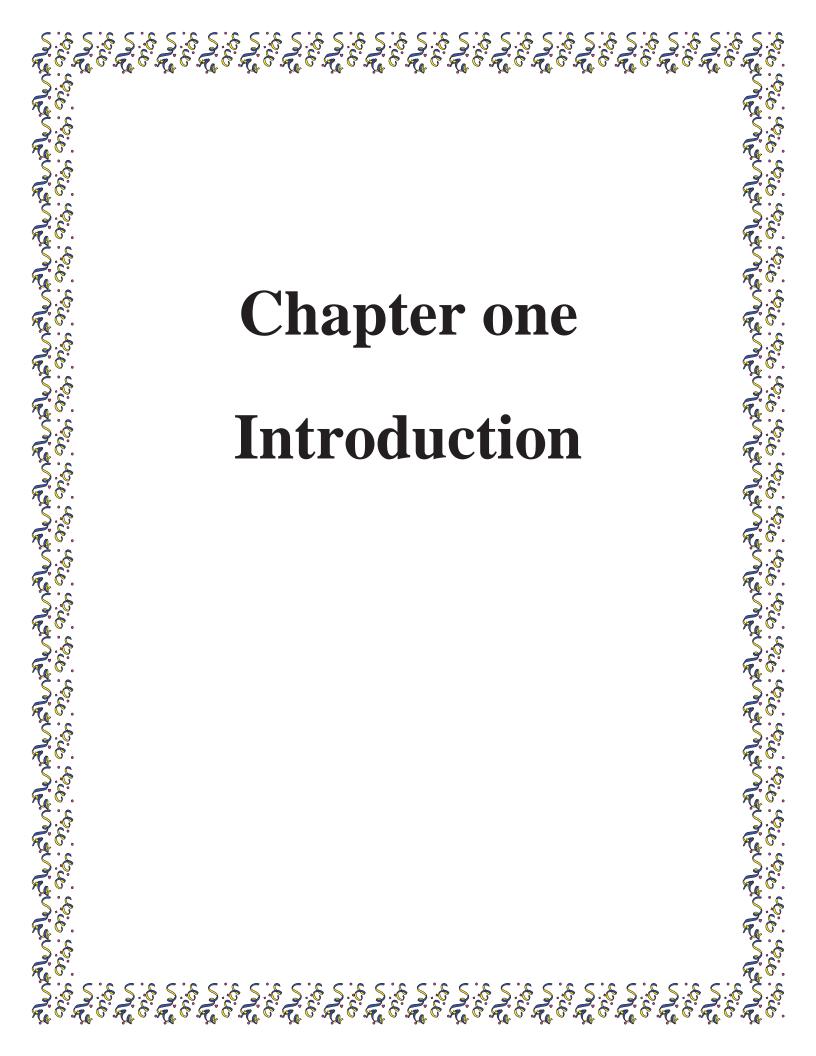
List of Tables

Table No.	Title name	Page
3-1	Instruments and equipments used in the study	23
3-2	Chemicals and biological materials used in the study	24
3-3	Dyes used in this study	25
3-4	Ready biochemical solutions used in this study	25
3-5	Culture media used in this study	26
3-6	The antibiotic discs used in this study	27
4-1	The number of specimens according to their gender	45
4-2	The number and percentage of bacteria isolated from diabetic foot ulcers	46
4-3	Identification of <i>Staphylococcus</i> spp. by biochemical tests	47
4-4	Biochemical tests for Gram-negative bacteria	49
4-5	Number and percentage of MDR,XDR and PDR of <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i>	52
4-6	Number and percentage of MDR,XDR and PDR of <i>E. coli</i> and <i>K. pneumonia</i>	56
4-7	Number and percentage of MDR,XDR and PDR of <i>P. aeruginosa</i>	59
4-8	Antibacterial activity of <i>Musa</i> x <i>paradisiaca</i> on bacterial growth	61
4-9	show the crystallite size of Ag NPs Prepared by green syntheses	65
4-10	The Cumulation size of Ag NPs biosynthesis by <i>Musa</i> x <i>paradisiaca</i> extract	66
4-11	show the crystallite size of ZnO NPs Prepared by green syntheses	72
4-12	Estimation of ZnO Nanoparticles Size	73
4-13	Antibacterial activity of Ag NPs on bacterial growth	78
4-14	Minimum Inhibition concentration (MIC) of Ag NPs againt pathogenic bacteria	80
4-15	Antibacterial activity of ZnO NPs on bacterial growth	82
4-16	Minimum Inhibition Concentration (MIC) of ZnO NPs againt pathogenic bacteria	85

Q

Figure	Figure name	Page
No. 2-1	Musa x paradisiaca fruit	15
2-1	Different methods for NPs synthesizing	17
2-2	Biological Synthesis of nanoparticles	18
	The resistance of antibiotics of <i>S. aureus</i> and <i>S.</i>	10
4-1	epidermidis	50
4-2	Antibiotic resistance of <i>E. coli</i> and <i>K. pneumoniae</i>	54
4-3	Antibiotic Resistance of <i>P. aeruginosa</i>	58
4-4	antibacterial activity of <i>Musa</i> x <i>paradisiaca</i> alcohol extract against <i>P. aeruginosa</i> and <i>k.pneumoniae</i> by agar well diffusion method. The letters (a, b, c,d,e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control).	62
4-5	antibacterial activity of <i>Musa</i> x <i>paradisiaca</i> alcohol extract against <i>S.epidermidis</i> and <i>S.aureus</i> by agar well diffusion method. The letters (a, b, c,d,e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control)	62
4-6	antibacterial activity of <i>Musa</i> x <i>paradisiaca</i> extract alcohol against <i>E.coli</i> by agar well diffusion method. The letters (a, b, c, d, e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control)	63
4-7	Show the biosynthesis of Ag NPs from <i>Musa</i> x <i>paradisiaca</i>	64
4-8	XRD pattern of Ag NPs prepared by green synthesis	65
4-9	AFM images with the nanoparticles size distribution of Ag NPs synthesized using <i>Musa</i> x <i>paradisiaca</i> extracts	67
4-10	The SEM images of Ag nanoparticles	68
4-11	Uv-Visible spectroscopy of Ag NPs prepared by green syntheses	69
4-12	FTIR spectrum of Ag NPs prepared by green syntheses	70
4-13	ZnO NPs synthesis by <i>Musa</i> x <i>paradisiaca</i> fruit peel extract (a) initial color (b) final color change	71
4-14	XRD pattern of ZnO NPs prepared by green synthesis	72
4-15	AFM(3D) and (2D) images of ZnO nanoparticles Synthesized by <i>Musa</i> x <i>paradisiaca</i>	74

List of Figures


4-16	ZnO NPs average size synthesized by Musa x paradisiaca	74
4-17	The SEM images of ZnO nanoparticles	75
4-18	Uv-Visible spectroscopy of ZnO NPs prepared by green syntheses	76
4-19	FTIR spectrum of ZnO NPs prepared by green syntheses	77
4-20	antibacterial activity of Ag NPs against <i>S. aureus</i> and <i>S. epidermidis</i> by agar well diffusion method. The letters (a, b, c, d, e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control)	79
4-21	antibacterial activity of Ag NPs against <i>E. coli</i> and <i>K. pneumoniae</i> by agar well diffusion method. The letters (a, b, c, d, e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control)	79
4-22	antibacterial activity of Ag NPs against <i>P. aeruginosa</i> by agar well diffusion method. The letters (a , b, c , d , e) represent the concentrations (200 , 100 , 50 , 25 , 12.5) mg/ml respectively, f (control)	80
4-23	antibacterial activity of ZnO NPs against <i>K</i> . <i>pneumoniae</i> and <i>S. epidermidis</i> by agar well diffusion method. The letters (a, b, c , d ,e) represent the concentrations (200 , 100, 50,25 ,12.5) mg/ml respectively, f (control)	83
4-24	antibacterial activity of ZnO NPs against <i>E. coli</i> and <i>S. aureus</i> by agar well diffusion method. The letters (a, b, c, d, e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control)	83
4-25	antibacterial activity of ZnO NPs against <i>P. aeruginosa</i> by agar well diffusion method. The letters (a, b, c, d, e) represent the concentrations (200, 100, 50, 25, 12.5) mg/ml respectively, f (control)	84

List of Abbreviations

Abbreviation	Key	
AFM	Atomic force microscope	
Ag NPs	Ag NPs Silver nanoparticles	
Вар	Biofilm related protein	
CDC	Centers for Disease Control	
CFU/ml	Colony Forming Unit per millimeter	
CLSI	Clinical and Laboratory Standards Institute	
D.D.W	Double Distal water	
D.W	Distal water	
DFU	diabetic foot ulcers	
EMB	Eosin Methylene Blue	
FTIR	Fourier transform infrared spectroscopy	
HCl	Hydrochloric acid	
	"I" is for indole test; "M" is for methyl red test; "V"	
IMViC	is for Voges-Proskauer test, and "C" is for citrate	
	test	
JCPDS	Joint Committee on Powder Diffraction Standards	
LPS	Lipopolysaccharide (Endotoxin)	
MDR	Multiple drug resistant	
MIC	Minimum inhibition concentration	
MR	Methyl red	
MRSA	Methicillin-resistant Staphylococcus aureus	
nm	Nanometers	
NPs	Nanoparticles	
PDR	Pandrug-resistant bacteria	
QS	Quorum sensing system	
SCCmec	staphylococcus cassette chromosome	
SEM	Scanning electron microscope	
UTI	UTI Urinary tract infections	
UV-Vis	Ultraviolet-visible spectrum	
WHO	World Health Organization	
XDR	Extensively drug-resistant	
XRD	X-ray Diffraction	
ZnO NPs	Zink oxid nanoparticles	

XI

P

INTRODUCTION

Diabetic foot refers to a series of pathological abnormalities affecting the lower limbs that are typically caused by diabetic consequences such as peripheral neuropathy, vascular damage, and loss the sensation in the feet. High blood sugar and uncontrolled diabetes cause nerve damage in the feet and inadequate blood flow, resulting in numbness in the feet, and the patient does not feel if he has a wound or injury to the foot, increasing the risk of diabetic foot infection, if infections, ulcers, and serious consequences are not treated promptly, the diabetic foot may be amputated (Leone *et al.*, 2012).

There are many mechanism resistance of bacteria to antibiotic, like enzyme inactivation, reduced cell permeability, target protection, target overproduction, changed target site/enzyme, and enhanced efflux due to efflux pump overexpression. Other more complicated phenotypes associated with antibiotic resistance in bacteria include biofilm development and quorum sensing (Davies and Davies, 2010).

The rising necessity for a good treatment against multidrug resistant infectious diseases has improved interest in discovering antibiotic resistance inhibitors as a first step toward developing a combination medication, nanotechnology which is a technique that enable the introduce of materials in nano- scale structure was applied in order to maximize the drug therapeutic activity and minimize its undesirable side effects (Ibrahim, 2020).

The medicinal plants were used have been discovered and have been used since prehistoric times in traditional medicine practices, medicinal and nutritious materials for work, and used in pharmaceuticals to treat many ailments, plants synthesis hundreds of chemical compounds for functions including defense against insects, fungi diseases and herbivorous mammals (Shakya, 2016).

1

Nanomaterials synthesis is currently one of the most prominent research topics. They are small sized particles ranging in size from (10 - 100)nm. Nanoparticles are used in biomedical applications as they offer many advantages to larger particles including a higher surface to volume ratio and better magnetic properties (McNamara and Tofail, 2017).

A significant interest was received worldwide for the antibacterial activity of zinc oxide nanoparticles (ZnO NPs) (Sirelkhatim *et al.*, 2015). This interest was due to their specific physicochemical properties including their small particle size, morphology, porosity and their crystallinity, a feature that enhance their antimicrobial activity against pathogenic microorganisms (Jin and Jin, 2021).

Silver nanoparticles (Ag NPs) are among the most explored nanoparticles, because of their antimicrobial activity against a variety of commensal and pathogenic strains, silver nanoparticles are believed to be inhibitory against a variety of fungi , viruses, and bacterial strains (Mekawey and Helmy, 2017).

The aims of this study are:

- 1. Determine the antibacterial activity of *Musa* x *paradisiaca* extract against pathogenic bacterial isolates from diabetic foot ulcer patients.
- Examination of the effectiveness of the nanomaterial and the plant extract on bacteria and the determination of Minimum Inhibition Concentration (MIC) of ZnO NPS and Ag NPS.
- 3. Identification of treatment-resistant bacteria by testing sensitivity to treatment.
- 4. Biosynthesis of zinc oxide and Ag nanoparticles from *Musa* x *paradisiaca* fruit peel.

2