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Abstract

This paper is devoted to present a numerical model to estimate the density of higher-order

prime in a set of integers 17 .This model is examined along this paper and the results are listed
out ,and standard primarily tests are deployed to confirm the result of the model presented in
this paper .Safe prime has been the essential concern when developing public key
cryptographic applications, the density of safe primes is vital parameter to select a proper
range on integers .The result along this paper has been compared with other mathematical
approaches to evaluate the safe prime density .A table of the comparisons shows the
performance of this numerical model
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1- Introduction

The two most important characteristics of the sequence of primes is that, there are many of
them but that their density is rather slim. Euclid's showed that there are infinitely many primes
[1]; in fact there are infinitely many in any nontrivial arithmetic sequence of integers, this fact

was proved by Dirichlet and is known as Dirichlet's theorem [2]. If X is a natural number and

TI(X) represents the number of primes less than or equal to X, then this function behaves like

the function i This result is known as the prime number theorem [ see for example

reference 3], which addresses the global smoothness of the counting function Tt(x) providing
the number of primes less or equal to integer Xwas the first hint of such regularity.

The prime number theorem was originally conjectured by both Guass and Legendre [4],
although Euler also surmised the result [4]. The attempted proof of the prime number theorem
was begin by Chebychev in 1848. He proved that there exist constants A and A, with .922

<A <land 1< A,<1.105 such that

7(X)
x/Inx

A <A, @

Riemann in 1859 [7] attempted to give a complete proof using complex analysis. His
work considered the beginnings of modern analytic number theory. This refers to the use of
analytic methods, especially complex analysis, in the study of number theory.

Legendre [4] published a bit earlier than Gauss looking at the list of primes up to 1,000,000,
came up with a the formula:

X

7(X) =
In(x) —1.08366

(2)

Gauss looked at the list less than 3,000,000 and noticed that the prime number function
is given by the function Li(x) which was defined by the integral

. t 1
Li(x) = | —dt. 3
(x) j — 3
Gauss's observation was then that
7(X) = Li(x) 4.
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If we integration Equation (3) by parts is used on the integral defining Li(x) and we take the
limitas x — oo, it is clear that this integral is Asymptotically means goes to zero.

Finally In 1896, Hadmard and independently, C. de la Vallee Poussin proved the prime
number theorem [4].Their proofs relied heavily on complex analysis. It was considered for a
long time that the prime number theorem was at least as complicated as the theory of complex
variables. Most mathematicians doubted that a proof that did not heavily rely on the theory of
analytic functions could be found. However, in 1949 Selberg [5] and later Erdfe came up with
an elementary proof of the prime number theorem. This proof is actually harder than the
analytic proof but is elementary in that it doesn't use any complex analysis.

2- Cryptography and prime number [8]

Cryptography is the study of the methods that allow the secure transmission of information;
two main types of cryptography exist:

a) Secret key: The classical method, used since ancient Rome, it is useful only when the
number of users is small, since its correct working requires each user to agree on - and
exchange secret key with - every other user prior to use;

b) Public key: the modern method, it allows secure communication even when the
number of users is high, since it does not require a prior exchange of secret keys. It
was first proposed by Diffie and Hellman in 1976.

At first sight, public key cryptography seems impossible. In order to persuade you of the
opposite, we propose the classical example of the double lock. Suppose that there are two
users A and B and that A wants to send a secret message to B;

1) A puts the message in a box, locks it with her lock LA (Only A has a key to this lock)
and then sends it to B.

2) B receives the box locked with lock LA and adds her own lock LB (only B has a key
to this lock) and sends everything back to A;

3) A receives the box with double lock, removes lock LA and re-sends the box to B;

4) At this point, having received the box, B can remove the lock LB and read A’s
message.

The security of this method lies in the fact that the keys to open the two locks are known only
to the respective owners (who have not agreed on and exchanged keys prior to the
transaction). One of the "mathematical versions" of this idea is R.S.A. public key
cryptography, proposed by Rivest, Shamir and Adleman in 1978 ,which depends on necessity
to build large primes to send the massage and this operation is computationally fast and
factories large natural numbers obtained as product of two primes to decode the massage such
operation is Computationally "slow" .this difference in the speed of execution of operations
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,to determine large primes on the one hand and to factories large numbers on the other ,
guarantees the security of the method, at least for a sufficiently long period of time. For
instance at the current stele of technology, a natural number of 140 digits in base 10 can be
produced through "multiplication of two random primes in a few seconds on a typical normal
computer available. Yet, the factorization operation of such 140-digit natural number would
require about month when employing several supercomputers working in parallel. Increasing
the number of digits further increases the security of the system: it is currently recommended
that numbers of at least 220 digits in base 10 be utilized.

3- Chebychev’s estimation and prime number

Where The prime number function 7¢(x ) and the prime number theorem answer the basic questions
concerning the density of primes. A related question concerns the function

'p(ﬂ) = Pn 5).

where p, is the nth prime. That is the question whether there is a closed-form function that estimates
the nth prime. The answer to this is yes and turns out to be equivalent to the prime number
theorem. We state it below.

Theorem 3.1 The nth prime p, is given asymptotically by
pa~nin(n), (6)
Proof : From the prime number theorem we have that T(x) ~x/Inx, Let

y=x/Inx, (7)

which implies that
Iny =Inx— Inlnx. (8)
But In I x is asymptotically small compared to I7t X, and hence

Iny~Inx. (9)

Now

x =ynx~yiny,. (10)
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This shows that the inverse function to X /Inx is asymptotically x /I x. But by the prime

number theorem this is asymptotically the inverse function of T(x).

Notice that this Theorem. have recovered the prime number theorem.

3.1 Chebychev Estimate

The first significant progress in developing a proof of the prime number theorem was

obtained by Chebychev in 1848 he proved that the functions T(x) and X /In X are of the

T}
Ny Inx
existed then the limit would have to be 1. At first glance it appeared that he was quite close to
a proof of the prime number theorem.

same order of magnitude, a concept we will explain in detail below, and that if lim

However, another fifty years and the development of some completely new ideas
from complex analysis to actually accomplish this. A proof, along the lines of Chebychev 's
methods, without recourse to complex analysis, would not be done until the work of Selberg
and ErdOs in the late 1940s .

Chebychev proved the following result, now known as Chebychev's estimate.
Theorem 3.1. There exist positive constants A5 and A such that

Aliin[x]iﬂz i (11)

forall x > 2.
Proof see [4].

This theorem says that the primes become relatively scarcer as x gets larger. In probabilistic
terms it says that the probability of randomly choosing a prime less than or equal to x goes to
zero as x goes to infinity. The more interest in this probabilistic sense that the probability of
randomly choosing a prime is relatively not that small. For any x the probability of randomly
choosing a prime less than x is z(x)/ x for large x this Approximately equal to 1/In(x) even

for very large real numbers X, this is not that small. The number e°®° has 86 decimal digits, yet
the probability of randomly choosing a prime less than this value is about .005. This argument
shows that the primes, although scarce, are still rather dense in the integers. As we have
already remarked, the primes are asymptotically denser in the sequence of squares (1, 4, 9,
16, ...}. This relatively high probability of locating a prime will play a role in cryptography.
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4- The prime-counting function in terms of the logarithmic integral and Approximations for
the nth prime number

The German Mathematician Johann Carl Friedrich Gauss ( 30 April 1777 - 23 February

1855) conjecture that an even better approximation to T(X) is given by the logarithmic

integral function Li(1T), the discrete version defined by

Li() = = %E,

k

(In x K

(12)

This integral is strongly suggestive of the notion that the 'density’ of primes around X

should be 1 /Inx. the logarithmic integral function or integral logarithm Li(x) is a Special
function. This function is related to the logarithm by the asymptotic expansion

L) ~ = 52,

0k

k

2x

1

T om0z w0

(13)

So, the prime number theorem can also be written as Tt(x) ~ Li(x). In the table below we
compare the exact values of z(x) to legendre formula and gauss function Li(x)and

7(x) from the prime number thorem which show that 7z(x) = x/In(x) ,we show the legender
formula is true when replace 1.08366 with 1 ,and the difference is very small.

Table 4.1 the compared values density of prime number calculated in different whys

x 7(x) €M7 In(x); D, NG _m 200 Lxﬁdt _ﬁ ko(lnki)i)k 709 In(X); -1
10 4| -3.4294e- | -4.2039e+000 2.2 -4.490 6.5706e-001
10 25| 3.2853e- | -3.3969e+000 51 - 4.2853e+000
10 168 | 2.32356+0 | -3.70056+000 10 - 2.4235e+001
10 1229 | 1.4326e+0 | -1.514764000 17 - 1.4426e+002
10 9592 | 9.0611e40 | 3.5970e4000 38 - 9.0711e+002
10 78498 6.1156e- | -4.5178e+001 130 - 6.1166e+003
10 664579 4.4158e- | -5.6070e+002 339 - 4.4159e+004
10 5761455 3.3277e- | -6.5487e+003 754 - 3.3277e+005
10 50847534 | 2.5926e+0 | -6.9985e+004 1701 -2.728 2.5926e+006
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10 455052511 | 2.07586+0 | -6.9049eHX)5 3104 -] 2.0758e+007
10 4118054813 | 1.6992e+0 | -6.5451e+006 11588 -] 1.6992e+008
10 37607912018 | 1.4167e- | -6.0615e+007 38263 | 1.4167e+009
10 346065536839 | 1.1993e+0 | -5.5556e+008 | 108971 - 1.1993e+010
10 3204941750802 | 1.0284e+0 | -5.0703e+009 | 314890 - 1.0284e+011
10| 29844570422669 | 8.9160e- | -4.6224e+010 | 1052619 | 8.9160e+011
10 | 279238341033925 | 7.8043e+0 | -4.2169e4011 | 3214632 | 7.8043e+012
10 | 2623557157654233 | 6.8884e- | -3.8534e+012 | 7956589 -|  6.8884e+013
10 | 2473995428774086 | 6.1248e- | -3.5290eH)13 | 21949555 | 2.0504e+01 | 6.1248e+014
10 | 2340576672763446 | 5.4816e- | -3.2398e+014 | 99877775 | 2.3406e+01 | 5.4816e+015
10 | 2220819602560918 | 4.9347e+0 | -2.9819e+015 | 22274464 | 2.2208e+01 | 4.9347e+016
10 | 2112726948601873 | 4.4658e+0 | -2.7517e4016 | 59739425 | 2.1127e+01 | 4.4658e+017
10 | 2014672866893159 - | -2.0170e+020 | 19323552 | 2.4740e+01 | -1.9738e+020
10 | 1925320391606803 - | -1.9274e+021 | 72501862 | 2.3406e+01 | -1.88806+021

5-proposed numerical model for prime density estimation:

Several mathematical insights regarding Benford’s law have also been put forward so far and
proved a central Limit _like theorem [5] which states that random entries picked from random
distributions form a sequence whose first- digit distribution tends towards Benford’s Law
explaining thereby its ubiquity practically, this law has for a long time been the only
distribution that could explain the presence of skewed first-digital frequencies in generic of
datasets Recently proposed a generalization of Benford’s law based on multiplicative

. - : - L1
processes. It is well known that a stochastic process with probability density — generates data
X

that are Benford; therefore, Series generated by power-Law distributions p(x)~x~" with
oc# 1 would have a first — digit distribution the follows a so-called GBL

1

o pdtl o
pld) =cf, "=x dx=

[(I‘i + 1} 1—ec IIil—:x]

(14)
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Where the prefactor is fixed for normalization to hold and << is the expond of the original
power-Low distribution (observe that for &= 1 the GBL reduces to the benford low , while
for ¢= 0 it reduces to the unigorm distribution .

5-1 The first-digit frequencies of prime numbers:

Although Diaconis showed that the leading digit of primes distributes uniformly in the infinite
Limit [6] , there exists a clear bias from uniformity for finite set.given an interval [1, N] there

exists a particular value % (IN) for which a GBL fits with extremely goad accuracy the first —
digit distribution of the primes appearing in that interval observe of this point that the

functional dependency of%¢ is only in the interval’s .

Upper bound ; once this bound is fixed , o< is constant in that intervals Interestingly,

the value of the fitting parameter < decrease as the intervals upper bound, hence the number
of primes , Increases in figure 5.1

(@) 0.15

0.10

8]

0.05

| | | | | | | |
10% 10° 10% 107 10% 10° 1010 10!
JI‘Nr

Figure 5.1. Size-dependent parameter c. circles represent the exponent c(N')

We have plotted this size dependence , showing that a functional relation between o<

and IV seems to take place

o (N) = S (15)

logN—a
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where @ = 1.1 £ 0.1 is the best fit .Note that limy_, (N) = 0 and this size dependent
GBL reduces asymptotically to the uniform distribution. Which is consistent with previous
theory . Despite the Local randomness of the prime number sequence.

The prime counting function TL(N)) provides the number of primes in the interval
[1,NJand up to normalization, stands as the cumulative distribution function of prime. While

T(N)is a stepped function ,a nice asymptotic approximation is the offset logarithmic integral
(W)~ [ ;ﬁdx = Li(N) (16)

1

We can interpret as an average prime density and Lower bound of the interval

logx

[1,N].

5-2 The primes counting function L(N):

Suppose that a given sequence has a power-Low-Like density X~ (and whose first
significative digits are consequently GBL ). One can derive from this latter density a counting

function L{IN) that provides the number of elements of the sequence appearing in the interval

[1,N].

<G guch that

A first option is to assume a Local density of the shape X
N
L(N)~ [, x~*® dx Note that this option implicitly assumes that o varies smoothly in

[1, N] which is not the case in the light of the numerical relation

1

x (N) = a7)

logN —a

which implies that the functional dependency of &< is only which respect to the upper

oel(x)

. - . . 1 .
bound value of the interval. Indeed X IS not agood approximation to . for any given
nx

interval. This drawback can be over come defining L{IN)as follous:

L) = ex(N) [, x~*™ dx (18)
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Where the prefactor is fixed for L(N)to fulfill the prime number theorem and
consequently

lim e q (19)

In the table below up to integer N values of the prim counting function Tt(IN)
approximation given by logarithmic integral L; (IN),N /logN the counting function
L(N)defined in equation

LIN) = e oc (N) [ x =@ dx (20)
And the ratio L(N) /m(N).

Table 5.2.1 the function (N ) with different N given by logarithmic integral

N 7(N) SO NzlogN | MM Lawy many
10 25 30 22 29 0.85533
10 168 168 145 172 0.97595
10 1229 1246 1086 1228 1.00081
10 9592 9630 8686 9558 1.00352
10 78498 78628 72382 78280 1.00278
10 664579 6649189 620421 662958 1.00244
10 5761455 5762209 5428681 574998 1.00199
10 50847534 | 50849235 4825a4942 | 50767815 1.00157
10 455052511 | 45505561 434294432 | 45448488 1.00125
10 | 2220819602560918 1.00027
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