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Abstract 

   We shall study  the problem  

Input :A computable vectorial Boolean function  

               

That is either  with mask, i.e.  

            

Output: Distinguish between the two eases, and in the second case produce S. 

To solve this problem exactly or with high probability, for  every such f , a classical 

(probabilistic) computer needs to evaluate f an exponential number of  times. 

 However, this problem can be solved with high probability, by a quantum algorithm 

with only  quantum evaluation of f .   

 

Keyword: quantum algorithm, quantum computation, Hilbert space, qubit, vector, Walsh – 

Hadamard 
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  الخلاصة

  في بحثنا ھذا تم مناقشة المشكلة الاتیة:

Input حساب وتقدیر دالة الدالة الاتجاھیة :Boolean  

                                                                               

  , بلاتفاق , بمعنى اخر1الى  2او  1الى 1وذلك اما 

                                                                           

Output  یصف او یمیز بین الاثنین بسھولة , وفي الحالة الثانیة یكون الناتج :S.  

الى درجة تعقید من النوع الاسي عند استخدامنا الى الخوارزمیة الكمیة ثم تقلیل درجة التعقید  ان حل ھذه المشكلة یحتاج الى

  .  o(n)النوع الخطي 

  ,والش,ھاداماردqubit الخورازمیة الكمیة, الحساب الكمي, فضاء ھلبرت, الموجھ, :ةالدلیلیالكلمات 

 
Introduction 

     In the early 1980s, Manin (1980)and Feynman (1982) in-dependently observed that 

computers built from quantum mechanical components would be ideally suited to simulating 

quantum mechanics. Whereas brute-force classical simulation of a system of n quantum 

particles(say, tow-level atoms) requires storing 2n complex amplitudes, and hence 

exponentially many bits of information, a quantum computer can naturally represent those 

amplitudes using only n quantum bits. Thus, it is natural to expect a quantum mechanical 

computer to outperform a classical one at quantum simulation. [1,2] 

    The perspective of quantum systems as abstract information processing devices 

subsequently led to the identification of concrete tasks, apparently unrelated to quantum 

mechanics, for which quantum computers have a quantifiable advantage. Deutsch (1985) gave 

the first such example, a black box problem that requires tow queries to solve on a classical 

computer, but that can be solved with only one quantum query.[2] 
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   Quantum computers achieve speedup over classical computation by taking advantage of 

interference between quantum amplitudes. Of course, interference occurs, in classical wave 

mechanics as well, but quantum mechanics is distinguished by the ability to efficiently 

represent a large number of amplitudes with only a few quantum bits. In Shor's algorithm and 

its predecessors, the "exponential interference" leading to quantum speedup is orchestrated 

using a unitary operation called the quantum Fourier transform (QFT), an algebraic 

operation. In this article, we review the state of the art in quantum algorithms for algebraic 

problems, which can be viewed as continuations of the line of work leading from Deutsch to 

Shor. Many, though not all, of these algorithms make use of the QFT in some capacity. 

    Before beginning our exploration of quantum algorithms for algebraic problems, we briefly 

summarize the development of quantum algorithms more generally. It has sometimes been 

said that there are really only tow quantum algorithms: Shor. And Grover's. we hope that this 

article will, in some small way, help to dispel this pernicious myth. While it is difficult to 

compete with the impact of Shor's algorithms (a dramatic speedup for a problem profoundly 

relevant to modern electronic commerce) or the broad applicability of Grover's algorithm (a 

modest yet surprising speedup for the most basic of search problems), recent years have seen 

a steady stream of new quantum algorithms, both for artificial problems that shed light on the 

power of quantum computation, and for problems of genuine practical interest.[3,4] 

       A quantum computer is a device for performing calculations using a quantum mechanical 

representation of information. Data are stored using quantum bits, or qubits, the states of 

which can be represented by - normalized vectors in a complex vector space For example, 

we can write the state of n qubits as    , Where the  satisfy 

 we refer to the basis of states  as the computational basis. 

     Although we can always suppose that our data is represented using qubits, it is often useful 

to think of quantum states as storing data  more abstractly. For example, given a group G , we 

write  for a computational basis state corresponding to the group element  , and  
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    , (where  with  )for an arbitrary  superposition 

over the group. We often implicitly assume that there is some canonical way of concisely 

representing group elements using bit strings; it is usually unnecessary to make this 

representation explicit. We use the convention that for any finite set S, the state  denotes 

the normalized uniform superposition of its elements, i.e.,                                  

If a quantum computer stores the state  in one register and the state  in another, the 

overall state is given by the tensor product of those states. This may variously be denoted 

or  .[5] 

 

Preliminaries 

Elements of Quantum Mechanics 

A quantum state is a mathematical description of a physical system at a given time.For 

example , it can consist of positions, momentums, polarizations, spins, etc., of various  

particles in the system. It is reaper sented as a ray in a Hilbert space of wave functions: a ray 

is an equivalence class of all vectors that differ by a multiplicative non Zero complex scalar. 

A Hilbert space is a vector space over the complex numbers C: vectors are denoted  

(Dirac's ket notation). It has a complex – valued inner product  with properties 

- Positivity:  with equality iff  

- Linearity:  

- Skew symmetry: =  
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Complete in the corresponding norm (square root of  Vectors can be normalized to 

have unit norm, i.e.,  . A self –adjoin operator A is linear operator in a Hilbert 

space (mapping vectors to vectors)that is equal to this adjoint operator, .e., . In a finite-

dimensions Hilbert space, vectors are ne column matrices. Linear operators are matrices, and 

 is conjugate  transpose of A. In an n-dimensional column vector whose component are 

coordinates with respect to the canonical basis.   In Dirac's bar notation,  denotes 

conjugate transpose of  and the inner product is defined as the scalar corresponding 

to the matrix product ⟨  │ ⟩ Two vectors are orthogonal if their inner product is zero A is 

a matrix and  is its conjugate transpose. Time  evolution of a closed quantum system is 

defined by the Schrödinger equation     

where the (time- dependent) Hamiltonian H is a self – adjoint operator It follows that  

                 

Where the time- dependent  is the corresponding linear and reversible evolution operator 

which is Unitary, i.e.,  (preserves orthogonality) 

   Thus, the evolution is deterministic, linear, and reversible; for any unitary  there exists a 

physical Hamiltonian to implement it. 

   However, the process of measure ement always has a probabilistic outcome This is the dual 

nature of quantum mechanics deterministic dynamics of quantum systems and uncertain, 

probabilistic measurements[7] 
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Quantum Bits – Qubits 

     A quantum bit – qubit is a quantum analog of a classical information bit taking only two 

values: 0 and 1.Qubit is a quantum system with two-dimensional state: it is a unit vector  in 

the two dimensional Hilbert space  , If  and  denote two orthogonal unit vectors, i.e., 

an orthonormal basis, them a qubit is a linear superposition 

                  a   

 

where a  and  b  are complex numbers such tat  

In matrix notation, with respect to the assumed basis 

  

a  Conjugate transpose of  

    Lnner product  

  

 

Qubit  measurement 

     If  aqubit a  is measured with respect to basis  then the measured 

outcome is  with probability and  with probability  

      A qubit contains the same amount of information as a classical bit, i.e., it is only possible 

to encode a single bit in each quantum bit, as information can only be extracted by 

measurements and any measurement has only two possible outcomes 
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As measurement changes the state and cloning of quantum states is impossible, it is 

impossible to measure first in one basis and them into another 

Consider a new orthonormal (conjugate) basis 

  

                

Then  

          

        

If the same qubit is measured with respect to new basis, then the measured outcome is  

with probability  and  with probability  .[8,9] 

Example  

     Measuring the first qubit in tow – qubit state vector     

                    

gives outcome  and  with probabilities   

 and  respectively  

If the outcome is  then the resulting state will be  

   

Tf the outcome  then the resulting state will be 
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 A quantum state is not entangled if and only if the partial measurements of all individual 

qubits are statistically independent, i.e., if and only if measurements of other qubits. 

In the example, the state  is entangled s that partial measurements of 

individual bits have equally likely outcomes, while partial measurements of remaining bits 

have outcomes with probability  1. 

On the other hand, the state  

 is not entangled and the 

outcomes of all the partial measurements of individual qubits are equiprobable. 

Quantum Transformations  

       Time evolution of a multiple qubits system is defined by a unitary transformations which 

is linear, reversible, and preserves inner products and hence orthogoality , Such a 

transformations can be regarded as rotation in Hilbert space. It is described by a unitary 

matrix, which for  qubits has dimension   .Tensor product of unitary transformations 

(unitary) 

  

Here  is the tensor product of matrices, which is defined as the right kronecker product. 

  

More general property   

Tensor product describes combined action of transformations on parts of a quantum state. 
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Multiplying a matrix by a unit. Complex number  does not affect quantum state vectors. 

For bass vectors, the outer matrix product  is a linear transformation that map  into  

and all other vectors to the zero vector.It is not unitary, but can be used to express unitary 

transformations. 

For any matrix   

     

Action of unitary transformation 

  

So  is in fact the j- th column of . [10,11] 

Thus, because of linearity, a unitary transformation is completely determined by its action on 

the basis vectors. 

Product of unitary transformations is unitary  (composition, matrix product ). 

Example: 

  Some single – qubit unitary transformations 

 identity. 

  bit - flip  

  phase – flip 
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  phase – bit-flip  

Square root of not transform 

   

Note:  

Headmard transform (on a single qubit)   

  

                 

Basic tool for creating quantum parallelism  

Their actions (directly or through matrix products) 

 

 

 

                                                

  

  

Controlled – NOT transform on two qubits: 
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                                 =  

 
Acts on basis vector as a vectorial Boolean faction: first bit unchanged, second bit changed if 

and only if first bit equal to 1 (reversible )   

Action on a general two-qubit vector: 

 
 Cannot be decomposed in to tensor product of two single – qubit transformations, but 

                                  

Creating entangled stat from disentangle led state 

 

 

                                              

                                               

 

Walsh-Handmard transform (on n qubits) 

            

           

                           

         

       is the well – known walsh – Hadamard matrix (  is the inner product of  and  

modulo 2)[3] 
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The main Result Algorithm 

     Operates on two quantum registers of length n and m qubits with initial state  

1) Apply walsh – Hadamard transform to first register  

   

2) Evaluate function  

  

3) Apply walsh – Hadamard transform to first register  

  

                                                     =  

                                                      

                                                     

                                                    

4) Measure first register (standard basis) to get outcome   

5) Repeat steps (1)-(4)  cn times to get outcome   

6) Classical post-processing: solve the system of linear equations over the binary field 

(mod 2), by Gaussian elimination, 
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If a nontrivial solution  exists, output 2- to -1 and s 

If not, output 1- to -1. 

Proof: 

If f is 1- to -1,then for each state  all different states  appear in the superposition 

before the measurement, so that the probability to get outcome  ,is, independently of j, equal 

to  

                                                

 If f is 2- to –L, then for each stat  exactly  different state  appear in the 

superposition before the measurement, because the state  and  are identical. 

Hence, the probability to get outcome  is equal to  

  

 

Because  

Thus, only j orthogonal to s are possible. 

If the process is repeated cn times,in the 1- to -1 case we will get cn random vectors , and in 

the 2- to -1 case we will get cn random vectors  that are orthogonal to s. 

The tow cases can probabilistically be distinguished by looking for a non-trivial solution to 

the considered system of linear equations(in  time) namely, if  C is sufficiently 

(moderately) large, then in the 1-to-1 case the vectors will with high probability span the 

whole n- dimensional space (full – ran k matrix) and in the 2-to -1 case the matrix will with 

high probability have (maximal) rank . 

as  consequence, th system will have exactly one nontrivial solution in the 2- t0 -1 case and 

no nontrivial solution in the 1- to -1 case   
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