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Abstract: 

        The fractional order partial differential equations (FPDEs) are generalizations of 

classical partial differential equations (PDEs). 

        In this paper we examine the stability of the explicit and implicit finite 

difference methods to solve the initial-boundary value problem of the hyperbolic for 

one-sided and two sided fractional order partial differential equations (FPDEs). The 

stability (and convergence) result of this problem is discussed by using the Fourier 

series method (Von Neumanns Method). 
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 استقرارية معادلات الفروق المنتهية للمعادلات التفاضلية الكسرية

  باستخذام اسلىب متسلسلات فىريه الجزئية
 

 

 

 

 مها عبد الجبار محمد

 قسن الشياضياث 

 كليت الخشبيت )ابي الِيثن(

 جاهعت بغذاد

 

 

 

 :المستخلص

 الخفاضليت الجزئيت. اى الوعادلاث الخفاضليت الكسشيت الجزئيت ُي حعوين للوعادلاث        

ّفي ُزا البحث اسخخذهج طشيقت الفشّقاث الوٌخِيت الصشيحت ّالضوٌيت لحل هسألت القين الابخذائيت         

 ّالحذّديت للوعادلاث الخفاضليت الكسشيت الجزئيت راث الجِت الْاحذة ّراث الجِخيي. 

 هخسلسلاث فْسيَ.ّقذ ًْقشج ًخائج الاسخقشاسيت ّالخقاسب لِزٍ الوسألت باسخخذام 
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1.Introduction 

        In this paper, we are going to modify a new approach for investigating the 

stability of the FPDEs by the Fourier series method (Von Neumanns method). 

       We will study the simplest form of hyperbolic PDE of the form: 
2 q

2 q

u(x, t) u(x, t)

t x

 


 
, L  x  R, 0  t  T.                                                         …[1] 

where q is the fractional numerical and 1  q  2. 

        Together with the initial and zero Dirichlet boundary conditions: 

u(x,0) f (x) for L x R

u(x,0)
g(x) for L x R

t

u(L, t) 0 for 0 t T

u(R, t) 0 for 0 t T

   



   

 
  


   

                                                                …[2] 

 

        We use the explicit and implicit finite difference methods to solve eq.[1] for 

one-sided FPDEs. Also, to solve two-sided FPDEs that the following form, (1): 
2 q q

2 q q

u(x, t) u(x, t) u(x, t)

t x x 

  
 

  
, L  x  R, 0  t  T.                                      …[3] 

together with the initial and zero Dirichlet boundary conditions given by eq. [2], 

where q is a fractional number, 1  q  2. 

 

        We recall the left-hande and the right-hande shifted Grünwald estimate              

(see (2)) to the left and right-handed derivatives, see (3,4). 
n 1q

wq q
w 0

f (x) 1
g f[x (w 1)h]

x h

 

 


  


                                                                 …[4] 

nq

wq q
w 0

f (x) 1
g f[x (w 1)h]

x h



 


  


                                                                  …[5] 

where n +, n – are partial integers, such that: 

n L
h

n





  and 

R x
h

n





 . 

where g0 = 1 and 
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w
w

q(q 1) (q w 1)
g ( 1)

w!

  
  , w = 1, 2, …                                                  …[6] 

        We divide the x-interval [L,R] into n-subintervals [xi,xi +1] such that xi=L + i ∆x , 

x = 0, 1,…,n and 
R h

h x
n


   . 

        Also, we divide the t-interval [0,T] into m-subintervals [tj,tj+1] such that tj = j ∆t, 

j = 0, 1, …, m and k = ∆t = 
T

m
. 

        To do this, we substitute x = xi, t = tj into eq.[1] and [3] and replacing the partial 

derivatives 

2

2

u

t




 and 

q

q

u

x




 with their approximations and using the left-handed and 

right-handed derivatives in eq.[4], [5]. 

       And ui,j is the numerical solution of FPDE at each (xi,tj), i =0,1,…,n and                 

j = 0,1,…,m such that ui,0 = f(xi) and u0,j = un,j = 0 for i =0,1,…,n and j = 0,1,…,m. 

By evaluating the explicit and implicit finite difference methods to solve eq.[1] and 

eq.[3] at each i and j using the initial-boundary conditions in eq.[2], one can get the 

numerical solutions of eq.[1] and eq.[3]. 

 

 

2. Stability by Fourier Series Method (Von Neumanns Method) 

        This method, developed by Von Neumann during world war II, was first 

discussed in detail by OBrien, Hyman and Kaplan in a paper published in 1951, (5). 

        To expresses an initial line of errors in terms of a finite Fourier series, and 

consider the growth of a function that reduces this series for t = 0 by a (Variable 

Separable) method. 

        The Fourier series can be formulated in terms of sines or consines but the 

algebra is easier if the complex exponential form is used. That is, with 

n

n

a cos(n x / )  or n

n

b sin(n x / )  replaced by the equivalent n x /
n

n

A e  , 

where 1    and ℓ is the interval throughout which the function is defined, and put 

x =ih, also, t = jk, therefore; changing the notation u(ih,jk) to ui,j. 

Hence, 

n ihn x / n ih / Nh
n n nA e A e A e

     , where n n / Nh    and Nh  . 

        Denote the errors at the pivotal points along t = 0, between x = 0 and Nh, by 

E(ih) = Ei, i =0, 1, …, N. Then (N+1) the equations: 

n

N
ih

i n

n 0

E A e




  , i =0, 1, …, N. 
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are sufficient to determine the (N+1) unknown A0, A1, …, An uniquely, showing that 

the initial errors can be expressed in this complex exponential form.  

We need only consider the propagation of the error due to a single term, such as 
ihe . The coefficient An is a constant and can be neglected. The investigate the 

propagation of this error as t increases, we need to find a solution of the finite 

difference equation which reduces to 
j ihe 

 when t = jk = 0. 

Assume: Ei,j = e
x

 e
t

 = e
ih

 e
jk

 = e
ih

 
j
, where  = e

k
, and , in general, is a 

complex constant. 

This obviously reduces to e
ih

 when j = 0, the error will not increase as t increases 

provided   1, (6). 

        It should be noted that this method applies only to linear difference equations 

with constant coefficients, and strictly speaking only to initial value problem with 

periodic initial data. 

        The criterion   1 is necessary and sufficient for two time-level difference 

equations, (7). 

       In particle the method often gives useful results even when its application is not 

fully justified, (6). 

 

 

3. Stability of the Explicit and Implicit Finite Difference Methods  

     for Solving One-Sided Fractional Partial Differential  

     Equations,(1),(6),(8) 

        Consider the explicit difference method which results from using the center 

difference quotient formula for 

2

2

u

t

 
   

 and using the left-handed shifted Grünwald 

estimate by eq.[4] for 

q

q

u

t

 
   

, therefore; by substituting that into the FPDE [1], gives 

us: 
i 1

i, j 1 i, j i, j 1
w i w 1, j2 q

w 0

u 2u u 1
g u

k h


 

 



 
   

where i =0, 1, …, n – 1 and j = 1, 2, …, m – 1. 

The central difference quotient for the second partial derivative is given by: 
2

2

u

t






i, j 1 i, j i, j 1

2

u 2u u

k

  
                                                                                 …[7] 
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Also from eq.[6], assume g1 = – q , where 1  q  2, i  1, Hence gi  0 for all value 

of i. Therefore 
i 1

w 1

w 0

g g ( q) q




                                                                                        …[8] 

Then the resulting equation can be explicitly solved to give: 
i 1

i, j 1 i, j i, j 1 w i w 1, j

w 0

u 2u u r g u


   



                                                                  …[9] 

where 

2

q

k
r

h
 . 

        The difference between analytical and numerical solutions of the difference 

equation remains bounded as j increases, the error Ei,j = u(hi,kj) – ui,j. 

        We shall consider the stability conditions under which the finite difference 

equation [9] is stable, that is; we have to find the stability conditions under which the 

error Ei,j is bounded. 

        Smith (6) shows that error Ei,j can be written in the form: 

Ei,j = e
ih

 
j
, where  = e

k
, and  is complex constant, 1                           …[10] 

One can substitute eq.s [8], [10] into [9], to get: 

 – 2 + 
– 1

 – r q e
h(1 – w)

  0 

Assume:  = h(1 – w). 

It is easily shown that the equation for  is: 


2
 – (2 + rq e


)  + 1 = 0 

Let A = 2 + rq e


, where e

 1. 

Hence, the values of  are 

2

1

A A 4

2

 
   and 

2

2

A A 4

2

 
  . 

From equation [10], the error will not grow with time if  



  1, for all real .                                                                                          …[11] 

 

        And eq.[11] is called Von-Neummanns condition for stability. Thus, we will 

use the eq.[11] to find the stability condition of the finite difference problem. 

        For stability; as r, q and  real, and when A < – 1, then 1 giving stability while 

2 giving instability. 

When – 1  A 1, we get 1 and 2 are complex numbers, hence 

2

1

A 4 A

2

  
   

and 

2

2

A 4 A

2

  
  . 

 

        Then using Von-Neummanns condition [11] to prove the eq. [9] is stable. 
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        For – 1  A  1, the only useful inequality is A  1, hence 2 + rq e


  1, where 

e

 1. 

Therefore; 
1

r
q


 , where 1  q  2. 

Hence, 
1

r
2

 . 

That leads to the stability condition 
1

r
2

 . 

 

 

 

 

        Now, one can use the similar approach for the implicit finite difference method 

to solve one-sided FPDEs, the resulting discretization takes the following form: 
i 1

i, j 1 i, j i, j 1
w i w 1, j 12 q

w 0

u 2u u 1
g u

k h


 

  



 
   

where i =0, 1, …, n – 1 and j = 1, 2, …, m – 1. 

Then to get 
i 1

i, j 1 i, j i, j 1 w i w 1, j 1

w 0

u 2u u r g u


    



                                                             …[12] 

        Above equation under the same conditions of equation [9] and subsitituting 

eq.[8] and eq. [10] into eq. [12], one can get: 

 – 2 + 
– 1 
 rq e


 , where  = h(1 – w). 

Hence, the values of  are: 
1

2

1

1 (1 A)

A

 
   and 

1

2

2

1 (1 A)

A

 
   where A = 1 – rqe


. 

To discusses the stability of equation [12]; by using Von-Neumanns condition [11]. 

When A < –1, we get real roots, also, 1 is giving instability while 2 is giving 

stability for this problem. 

Now, when – 1  A  1, we get complex numbers, which are 

1

2

1

1 (A 1)

A

  
   and 

1

2

2

1 (A 1)

A

  
  . 

The conditional of stability leads to r  1 when 1  q  2 and e

 1. 
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Therefore; the finite difference eq. [12] is instable for 
2

r
q

 , 1  q  2. 

 

 

4. Stability of the Explicit and Implicit Finite Difference  

    Approximation Methods to Solve Two-Sided Fractional Partial  

    Differential Equation By Stability for Fourier Series Metod,  

   (1), (6), (8) 

        Take the explicit finite difference approximation method for eq. [3] together 

with the initial –boundary conditions of eq.[2], then by substituting eq.s [4,5] and [7] 

into eq. [3], one can write the difference equation as: 
i 1 n i 1

i, j 1 i, j i, j 1 w i w 1, j w i w 1, j

w 0 w 0

u 2u u r g u g u
  

     

 

 
    

 
                         …[13] 

Next, investigate the stability of above equation, using the same approach as in 

section 3. One can get: 

 – 2 + 
– 1 
 2rq cos   

Therefore; 
2
 – 2 (1 + rq cos )  + 1 = 0, where  = h(1 – w). 

Assume: A = 2 + 2 rq cos , 0 < cos  < 1. 

Hence, the values of  are 

2

1

A A 4

2

 
   and 

2

2

A A 4

2

 
  . 

To discusses the stability of equation [13]; by using eq. [11], thus when A < –1, 1 is 

giving stability while 2 is giving instability. 

Also, when – 1  A  1, we get 1 and 2 are complex numbers, hence 

2

1

A 4 A

2

  
   and 

2

2

A 4 A

2

  
  . 

Also, for – 1  A  1, the only useful inequality is A  1, hence 2 + 2rq cos   1, 

where 0 < cos  < 1. 

Therefore; 
1

r
2q


 , where 1  q  2. 

Hence, 
1

r
4

 . Thus, the finite difference eq. [13] is stable for 
1

r
4

 . 
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        Now, carrying similar approach as in the explicit finite difference eq.[13] and by 

approximation eq. [3] at the points (ih,jk) using implicit difference method becomes: 
i 1 n i 1

i, j 1 i, j i, j 1 w i w 1, j 1 w i w 1, j 1

w 0 w 0

u 2u u r g u g u
  

       

 

 
    

 
                   …[14] 

Now, investigate the stability of eq. [14], by using the same approach in section 3, 

that leads to: 

(1 – 2rq cos ) 
2
 – 2 +1  0, where  = (1 – w)h. 

Let A = 1 – 2rq cos , 0 < cos  < 1. 

Hence, the value of  are: 
1

2

1

1 (1 A)

A

 
   and 

1

2

2

1 (1 A)

A

 
  . 

        Similarly, using Von-Neumanns condition, we have: 

When A < – 1, we get real numbers and 1 is giving instability while 2 is giving 

stability. 

        Also, when – 1 < A < 1, then 1 is giving instability while 2 is giving stability. 

Note that 1 and 2 are real numbers. 

        Now, when A > 1, 1 and 2 are complex numbers, also, they are giving stability 

and 1

1 A 1

A

  
   and 2

1 A 1

A

  
  . 

 

Now, for stability when – 1 < A < 1, we have A > – 1 which is the only useful 

inequality, hence,  

1
r

q cos



, where 0 < cos  < 1, 1  q  2                                                          …[15] 

Therefore, eq. [15] leading to the stability condition 
1

0 r
2

  , which means that the 

stability will occur only if
1

r
2

 . 

 

 

Conclusions 
 

1. FPDEs are so difficult to be solved analytically; therefore, in most cases, 

numerical and approximate methods are recommended. 

2. The stability results in the FPDE case are a generalization and unification for the 

corresponding results in the classical hyperbolic PDEs. 

3. The explicit finite difference method using the shift Grünwald method to solve the 

one-sided FPDEs is conditionally stable while the implicit of this scheme is 

instable. 
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4. The explicit and implicit finite difference method using the shift Grünwald 

method to solve the two-sided FPDEs is conditionally stable. 

5. The stability results for implicit FPDEs are more realizable than explicit FPDEs. 
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