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Abstract:

The fractional order partial differential equations (FPDES) are generalizations of
classical partial differential equations (PDES).

In this paper we examine the stability of the explicit and implicit finite
difference methods to solve the initial-boundary value problem of the hyperbolic for
one-sided and two sided fractional order partial differential equations (FPDES). The
stability (and convergence) result of this problem is discussed by using the Fourier

series method (Von Neumann’s Method).
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1.Introduction

In this paper, we are going to modify a new approach for investigating the
stability of the FPDEs by the Fourier series method (Von Neumann’s method).
We will study the simplest form of hyperbolic PDE of the form:
o2u(x,t) _ d%u(x,t)
ot o x4
where q is the fractional numerical and 1 <q < 2.
Together with the initial and zero Dirichlet boundary conditions:

L<X<R,0<t<T. 1

u(x,0) =f(x) for L<x<R
0u(x,0) =g(x) for L<x<R
ot & 2]
u(L,t)=0 for 0<t<T
u(R,t)=0 for 0<t<T

We use the explicit and implicit finite difference methods to solve eq.[1] for
one-sided FPDEs. Also, to solve two-sided FPDEs that the following form, (1):

d2u(x,t) _ d%(x,t) N o9u(x, t)

ot? 0, x4 o_ x4
together with the initial and zero Dirichlet boundary conditions given by eq. [2],
where ¢ is a fractional number, 1 <q < 2.

JL<X<R,0<t<T. .[3]

We recall the left-hande and the right-hande shifted Grinwald estimate
(see (2)) to the left and right-handed derivatives, see (3,4).

% (x) 1 ”f
= gy f[X—(w-21)h] ...[4]
a+ X1 + h® w=0
f(x) 1 ”Z
= g X+ (w-1)h] ...[5]
o_x4  _nh.oo
where n ., n_are partial integers, such that:
h, N2l anah = R=X
n n

+ —
where go =1 and
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gy = (-1)" q(q_l)“'(?_W”),w:l,z,... 6]
We divide the x—ir:,tve-rval [L,R] into n-subintervals [X;,X; +1] such that x=L +1i Ax ,
x=0,1,....nand h=Ax = R-h .
Also, we divide the t—interr]val [0,T] into m-subintervals [t;tj.1] such that t; = j At,

j=0,1,...,mand k= At= I
m
To do this, we substitute x = x;, t = t; into eq.[1] and [3] and replacing the partial
2 g
derivatives ﬁ and a—l; with their approximations and using the left-handed and
X
right-handed derivatives in eq.[4], [5].
And u;; is the numerical solution of FPDE at each (x;t), i =0,1,...,n and
j=0,1,...,m such that uj, = f(x;) and Up; = u,; = 0 for i =0,1,...,nand j = 0,1,...,m.
By evaluating the explicit and implicit finite difference methods to solve eq.[1] and
eq.[3] at each i and j using the initial-boundary conditions in eq.[2], one can get the
numerical solutions of eq.[1] and eq.[3].

2. Stability by Fourier Series Method (Von Neumann’s Method)

This method, developed by Von Neumann during world war Il, was first
discussed in detail by O'Brien, Hyman and Kaplan in a paper published in 1951, (5).

To expresses an initial line of errors in terms of a finite Fourier series, and
consider the growth of a function that reduces this series for t = 0 by a (Variable
Separable) method.

The Fourier series can be formulated in terms of sines or consines but the
algebra is easier if the complex exponential form is used. That is, with

Zan cos(nmx / ¢) or an sin(nntx / ¢) replaced by the equivalent ZAneynnxlf’
n n n

where y = J-1 and ¢ is the interval throughout which the function is defined, and put
x =ih, also, t = jk, therefore; changing the notation u(ih,jk) to u;;.
Hence,
A e = p et /N _ A e¥Pail \yhere B =nm/Nh and Nh=2¢.

Denote the errors at the pivotal points along t = 0, between x = 0 and Nh, by
E(ih) =E;,1=0, 1, ..., N. Then (N+1) the equations:

N _
Ei=> A i=0,1,..,N.
n=0
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are sufficient to determine the (N+1) unknown Ao, Ay, ..., A, uniquely, showing that
the initial errors can be expressed in this complex exponential form.
We need only consider the propagation of the error due to a single term, such as

e The coefficient A, is a constant and can be neglected. The investigate the
propagation of this error as t increases, we need to find a solution of the finite

difference equation which reduces to e/?" when t = jk = 0.

Assume: E;; = e e = " g = " &l 'where & = e*, and a, in general, is a
complex constant.

This obviously reduces to e when j = 0, the error will not increase as t increases
provided |§| <1, (6).

It should be noted that this method applies only to linear difference equations
with constant coefficients, and strictly speaking only to initial value problem with
periodic initial data.

The criterion |é’;| < 1 is necessary and sufficient for two time-level difference
equations, (7).

In particle the method often gives useful results even when its application is not
fully justified, (6).

3. Stability of the Explicit and Implicit Finite Difference Methods

for Solving One-Sided Fractional Partial Differential
Equations,(1),(6),(8)

Consider the explicit difference method which results from using the center
2

difference quotient formula for Lg—gj and using the left-handed shifted Grinwald
t

q
estimate by eq.[4] for (2—?} therefore; by substituting that into the FPDE [1], gives
t

us:
ui,j+1_2ui,j+ui,j—1_i§g .

k2 - hq — WHI-W+1, ]
wherei=0,1,...,n—landj=1,2,...,m—1.
The central difference quotient for the second partial derivative is given by:
0%u  Ujjuq —2Uj j+Uj 4
ot k2

7]
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Also from eq.[6], assume g; =—q, where 1 <q< 2,11, Hence g; > 0 for all value
of i. Therefore

i+1
D 9w <-0=—(-0)=9 [8]
w=0
Then the resulting equation can be explicitly solved to give:
i+1
ui,j+1_2ui,j+ui,j—1:rz Gwli-w+1, ] ...[9]
w=0
2
where r = —.
h

The difference between analytical and numerical solutions of the difference
equation remains bounded as j increases, the error E;; = u(h;,k;) — uij.

We shall consider the stability conditions under which the finite difference
equation [9] is stable, that is; we have to find the stability conditions under which the
error E;; is bounded.

Smith (6) shows that error E;; can be written in the form:

Ei;=e™" &, where & = e and a is complex constant, y = /-1 ...[10]
One can substitute eq.s [8], [10] into [9], to get:

E—2+&t_rqe®d W<

Assume: 6 = Bh(1 —w).

It is easily shown that the equation for & is:

g-(2+rqe’)g+1=0

Let A=2+rge” where |e?]<1.

Hence, the values of & are

:A+¢A2—4 A—+AZ 14
> .

& and &, = >
From equation [10], the error will not grow with time if
|&7| <1, for all real B. . [11]

And eq.[11] is called Von-Neummann’s condition for stability. Thus, we will
use the eq.[11] to find the stability condition of the finite difference problem.
For stability; as r, g and 3 real, and when A < — 1, then &; giving stability while

&, giving instability.
A+ V4 - A
2

When — 1 < A< 1, we get &; and &, are complex numbers, hence &; =

A—y\4— A2
> .

Then using Von-Neummann'’s condition [11] to prove the eq. [9] is stable.
- 28 -
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| |For — 1< A <1, the only useful inequality is A < 1, hence 2 + rq " < 1, where
e’ <1.

Therefore; r < _—1 where 1 <gq<2.
Hence, |r| < 1
2

That leads to the stability condition |r| < %

Now, one can use the similar approach for the implicit finite difference method
to solve one-sided FPDEs, the resulting discretization takes the following form:
Ujpjeaa—2U0ij+ Ui 1 &
= Z gwui—w+1,j+1

k? hd =
where1=0,1,...,n—landj=1,2,...,m—-1,
Then to get
i+1
Ui jop = 2U; j+ Ui o =T D Guliowag jot [12]
w=0

Above equation under the same conditions of equation [9] and subsitituting
eq.[8] and eq. [10] into eq. [12], one can get:
£—-2+& '<rge” & where 8 = Bh(1 - w).
Hence, the values of ¢ are:
1 1

_A)2 —(1-A)2

&1

To discusses the stability of equation [12]; by using Von-Neumann'’s condition [11].
When A < -1, we get real roots, also, &; is giving instability while &, is giving
stability for this problem.

and &, =

1
(A —1)2
1-y(A-1) an
A

Now, when — 1 < A < 1, we get complex numbers, which are &; = d

1

1+y(A-1)2
Ep = A :

The conditional of stability leadstor >1when1<q<2and le”®|<1.
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Therefore; the finite difference eq. [12] is instable for r < g ,1<g<2.

4. Stability of the Explicit and Implicit Finite Difference

Approximation Methods to Solve Two-Sided Fractional Partial

Differential Equation By Stability for Fourier Series Metod,
(1), (6), (8)

Take the explicit finite difference approximation method for eq. [3] together
with the initial —boundary conditions of eq.[2], then by substituting eq.s [4,5] and [7]
into eq. [3], one can write the difference equation as:

i+1 n—i+1

Ui jra =255+ Ui g =1 D Owliowanj+ 2 Gwlivwa,j ...[13]
w=0 w=0

Next, investigate the stability of above equation, using the same approach as in
section 3. One can get:

E—2+&1<2rqcos O

Therefore; £2—2 (1 +rq cos ) & + 1 = 0, where 6 = Bh(1 — w).

Assume: A=2+2rqcos0,0<cos0<1.

A+VAZ -4 A-AZ -4

Hence, the values of & are §; = 5 and &, = >

To discusses the stability of equation [13]; by using eq. [11], thus when A < -1, &; is

giving stability while &, is giving instability.

Also, when — 1 < A < 1, we get & and &, are complex numbers, hence
A +yV4 - A? A —y\4-A?

&= 2 2 -

Also, for — 1 < A <1, the only useful inequality is A < 1, hence 2 + 2rq cos 6 <1,
where 0 <cos 0 < 1.

and &, =

Therefore; 1 < ;—1 where 1 <q<2.

Hence, |r| < % Thus, the finite difference eq. [13] is stable for |r| < %
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Now, carrying similar approach as in the explicit finite difference eq.[13] and by
approximation eg. [3] at the points (ih,jk) using implicit difference method becomes:
i+1 n—i+1

Ui jp1—2Uj j+Ujjq =T Zgwui—w+1,j+1+ Z Jwlitw-1 j+1 ...[14]
w=0 w=0

Now, investigate the stability of eq. [14], by using the same approach in section 3,
that leads to:
(1 - 2rq cos 0) &% — 2& +1 <0, where 6 = (1 — w)Bh.
Let A=1-2rqcos0,0<cosO<1.
Hence, the value of & are:
1 1
1+ (1-A)? 1-(1-A)?
y :

Similarly, using Von-Neumann’s condition, we have:
When A < — 1, we get real numbers and &; is giving instability while &, is giving
stability.

Also, when — 1 < A <1, then &, is giving instability while &; is giving stability.
Note that &; and &, are real numbers.

Now, when A > 1, &; and &, are complex numbers, also, they are giving stability

1+yJA-1 1-yvA -1
A A '

Now, for stability when — 1 < A < 1, we have A > — 1 which is the only useful
inequality, hence,

& and &, =

and &; = and &, =

r< ,Where0<cos6<1,1<q<2 ...[15]

qcos6

Therefore, eq. [15] leading to the stability condition 0 < r < % which means that the

stability will occur only ifr < %

Conclusions

1. FPDEs are so difficult to be solved analytically; therefore, in most cases,
numerical and approximate methods are recommended.

2. The stability results in the FPDE case are a generalization and unification for the
corresponding results in the classical hyperbolic PDEs.

3. The explicit finite difference method using the shift Griinwald method to solve the
one-sided FPDEs is conditionally stable while the implicit of this scheme is
instable.

-31 -



Diala , Jour , Volume, 32, 2009

4. The explicit and implicit finite difference method using the shift Grinwald
method to solve the two-sided FPDEs is conditionally stable.
5. The stability results for implicit FPDEs are more realizable than explicit FPDEs.

References

1. Meerschaert, M. and Tadjeran C., (2006), Applied Numerical Mathematics, Vol.

56: 80-90.

Meerschaert, M. and Tadjeran C., J. Comput. Appl. Math.

Podlubny I., (1999), Academic Press, New York.

4. Samko, S., Kilbas, A., and Maricllev, O., (1993), Theory and Applications.
Gordon and Breach, London.

5. O'Brien, C.G.,, Hyman, M.A., and Kaplan, S., (1951), J. Math. Phys., 29:

223-251.

Smith, G., (1978), Oxford University Press.

Richtmyer, R.D., and Morton, K.W., (1967), Interscience Publishers.

8. Meerschaert, M., and Tadjeran, C., (2005), Applied Numerical Mathematics,
Vol. 56 : 80-90.

W

~N o

-32-



