

Calculations of Ground Band in even-even ¹⁷⁰⁻¹⁸⁰W nuclei by Interacting boson model (IBM-1)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

Calculations of Ground Band in even-even ¹⁷⁰⁻¹⁸⁰W nuclei by Interacting boson model (IBM-1)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

* Department of Physics, College of Education for Pure Science, Mosul University, Iraq

**Ministry of Education, General Directorate for Nineva Education, Iraq

Received 8 December 2013; Accepted 3 February 2014

Abstract

In this work, the properties of ¹⁷⁰⁻¹⁸⁰W isotopes are studied by the E-GOS curves and the relation between energy levels and E₂ showed that ¹⁷⁰⁻¹⁸⁰W lie in SU(3)-O(6) transition region were investigated to calculate the energy levels of ground state band according to the Interacting Boson Model (IBM-1). The entire calculations and drawing of the figures implemented by one program written by matlab language. The results are compared with experimental data and showed good agreement.

Keywords: energy levels, IBM(1), SU(3)-O(6), E-GOS, W isotopes.

حساب مستويات الطاقة للحزمة الأرضية لنظائر W 180-170 الزوجية – الزوجية بأستخدام أنموذج الساب مستويات الطاقة للحزمة الأرضية النوزوزنات المتفاعلة (IBM-1)

مشتاق عبد داؤد الجبوري* حسين علي حسن الصفار**
*قسم الفيزياء، كلية التربية للعلوم الصرفة، جامعة الموصل، العراق
**وزارة التربية، المديرية العامة لتربية نينوى، العراق

Calculations of Ground Band in even-even ¹⁷⁰⁻¹⁸⁰W nuclei by Interacting boson model (IBM-1)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

لخلاصة

E-GOS في هذا البحث تم دراسة خصائص نظائر التنكستن $E_1^{170-180}$ بواسطة منحنيات كاما مقسوماً على الزخم E_2 وتبين من العلاقة بين مستويات الطاقة ومستوي E_2 ان هذه النظائر تقع بين التحديدين SU(3)-SU(3) أي في المنطقة الأنتقالية بين النوى الدورانية والنوى ذات خصائص كاما الناعمة. حسبت مستويات الطاقة للنظائر المدروسة بأستخدام انموذج البوزونات المتفاعلة E_1 - E_2 من خلال برنامج حاسوبي كتب بلغة E_1 matlab يغي بهذا الغرض من اجراء الحسابات ورسم الأشكال المطلوبة. قورنت الحسابات الحالية مع النتائج العملية وتبين انها تتفق بشكل جيد.

الكلمات المفتاحية: نظائر التنكستن, منحنيات E-GOS، (6)O(6), أنموذج البوزونات المتفاعلة 1-IBM مستويات الطاقة.

Introduction

Several phenomenological and geometrical models [1] have been proposed to investigate the nuclear structure by the prediction of the ground states and the description of electromagnetic transition rates [2]. The quadrupole correlations and electromagnetic transition in nuclei depends mainly on the neutron-proton interaction. However, the excitation energies of collective quadrupole excitations in nuclei near a closed shell are strongly dependent on the number of nucleons outside the closed shell [3,4]. The tungsten isotopes received considerable attention both theoretically and experimentally in recent years. Abdul Ameer and Al-Shimmary [5] calculated the energy levels, B(E2) transition probabilities and electric quadrupole moment of the even-even ¹⁸⁰⁻¹⁹⁰W isotopes in the transition region SU(3)-O(6). The energy levels, electric quadrupole moments, B(E2) values of ¹⁸²⁻¹⁸⁶W isotopes have been calculated by, Salem *et al* [6] within the framework of the interacting boson model IBM-2. Due to the increased interest in this subject recent years, the energy levels and E-Gos of even-even ¹⁷⁰⁻¹⁸⁰W isotopes in SU(3)-O(6) transition region □ within framework are studied by the Interacting Boson Model (IBM-1).

ISSN: 2222-8373

Calculations of Ground Band in even-even ¹⁷⁰⁻¹⁸⁰W nuclei by Interacting boson model (IBM-1)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

Theory

Energy Gamma Over Spin (E-GOS)

Many nuclei exhibit a decay sequence consistent with quasi-vibrational excitations at lower spins, the perfect harmonic vibrator of gamma-ray decay energies are given by:

$$E_{\gamma}(J \to J - 2) = \hbar w \tag{1}$$

where J is spin state, \hbar is plank's constant and w is angular frequency. While, for an axially symmetric rotor,

$$E_{\gamma}(J \to J - 2) = \frac{\hbar^2}{2.9}(4J - 2)$$
 (2)

where 9 is moment of inertia of the nucleus.

The gamma-soft nucleus can be written as

$$E_{\gamma}(J \to J - 2) = \frac{E2_{1}^{+}}{4}(J + 2)$$
 (3)

The ratio $R = \frac{E_{\gamma}(J \to J - 2)}{J}$ provides an effective way of distinguishing

axially symmetric rotational, γ -unstable and harmonic vibrational mode [7].

at $J \rightarrow 0$

for vibrator
$$R = \frac{\hbar w}{J} \rightarrow 0$$
 (4)

Rotor
$$R = \frac{\hbar^2}{29} (4 - \frac{2}{J}) \rightarrow 4 \frac{\hbar^2}{29}$$
 (5)

$$\gamma$$
-unstable $R = \frac{E2_1^+}{4}(1 + \frac{2}{J}) \rightarrow \frac{E2_1^+}{4}$ (6)

Figure (1) shows these theoretical limits plotted for three schematic nuclei: (i) a vibrator in which the first 2^+ excited state lies at an energy of 500 keV, (ii) a rotor where this energy is 100 keV and (iii) a γ -unstable of energy 300 keV (These values were taken to represent typical nuclear vibrator, rotor and γ -unstable energies, respectively.)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

Figure (1): Standard curve of E-GOS plot for vibrational U(5), gamma unstable O(6) and rotational bands SU(3)

Interacting Boson Model (IBM-1)

In the present work, the IBM-1 states of the low lying collective state of even-even nuclei can be described by the interaction of s and d-bosons, carrying angular momentum L=0 and L=2, respectively. The IBM-1 Hamiltonian is written

$$H = \varepsilon \hat{n}_d + a_0 \hat{P}^+ \hat{P} + a_1 \hat{L} \cdot \hat{L} + a_2 \hat{Q} \cdot \hat{Q} + a_3 \hat{T}_3 \cdot \hat{T}_3 + a_4 \hat{T}_4 \cdot \hat{T}_4$$
 (7)

Where a_0 , a_1 , a_2 , a_3 and a_4 are strength of pairing, angular momentum and multipole terms. The Hamiltonian tends to reduce into three limits, the vibration U(5), γ -soft O(6) and the rotational SU(3) nuclei [8]. In U(5) limit, the effective parameter is ϵ , in the γ -soft limit O(6) the effective parameter is the pairing a_0 and in the SU(3) limit the effective parameter is the quadrupole a_2 .

The eigenvalues for the SU(3)-O(6) limit is given by [9]

$$E(\lambda, \mu, J) = K_3[N(N+4) - \sigma(\sigma+4)] + K_2(\lambda^2 + \mu^2 + 3(\lambda + \mu) + \lambda\mu) + K_5J(J+1)$$
 (8)

Calculations of Ground Band in even-even ¹⁷⁰⁻¹⁸⁰W nuclei by Interacting boson model (IBM-1)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

for low-laing N= σ , μ =0 and λ =2N therefore

$$E(\lambda, J) = K_2(\lambda^2 + 3\lambda) + K_5 J(J + 1)$$
(9)

Discussion and Conclusions

The parameters of Eq.(9) were calculated for $^{170-180}$ W nucleus and listed in table (1), it was found that K_2 decreases and K_5 increases with mass number.

Table(1): The Parameters K₂, K₅ and the ratio R=E₄/E₂ for ¹⁷⁰⁻¹⁸⁰W isotopes

Nucleus	K ₂ (keV)	K ₅ (keV)	R=E ₄ /E ₂
170W	25.7672	4.1226	2.95
172W	18.4796	5.2798	3.0609
174W	13.9465	7.7379	3.154
¹⁷⁶ W	12.6059	8.4789	3.2151
178W	10.7882	9.5505	3.2364
¹⁸⁰ W	10.4675	9.6598	3.26

Figure (2) shows that the ratio E_J/E_2 of $^{170-180}W$ versus spin (J) in which the limit lies between SU(3)-O(6). Eq.(9) used to calculate the energy levels of ground state band.

Figure (3) shows the E-GOS curves of the ground states band of isotopes. Comparing these curves with the ideal limits of vibration, rotational and γ -soft show the evolution in the property of these isotopes, were the slow reduce of all the curves from the first to the last excited states confirms that the $^{170-180}$ W isotopes lies between SU(3)-O(6) limit.

Figure (2): $E(J_1)/E(2_1)$ versus spin J

Fig. 2. (continued)

Figure (3): The E-GOS of ¹⁷⁰⁻¹⁸⁰W isotopes.

Fig. 3. (continued)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

Figure (4) shows the present calculations of the energy levels were found to be in a reasonable agreement with measured values.

Figure (4): Comparison between experimental energy levels and calculated data

Calculations of Ground Band in even-even ¹⁷⁰⁻¹⁸⁰W nuclei by Interacting boson model (IBM-1)

Mushtaq Abed Dawood Al-Jubbori* Hussein Ali Hassan Al-Saffar**

References

- 1. H. M. Mittal and Vidya Devi, Armen. J. Phys. vol. 2, issue 3, pp.146-156, (2009).
- 2. Hossain, Hewa Y. Abdullah, I. M. Ahmed, M. A. Seed, S. T. Ahmad. Armen. J. Phys. vol. 5, issue 3, pp. 101-104, (2012).
- 3. R. F. Casten, Nucl. Phys. A. vol. 347,pp. 173-204, (1980).
- 4. M. A. D. Al-Jubbori, Dialya Journal Pure. Science. vol. 9 No: 2, pp.45-56, (2013).
- 5. M. Abdul Ameer and M. A. H. Al-Shimmary. Armenian Journal of Physics, vol. 4, issue 3, pp. 146-153, (2011).
- 6. A. M. Salem, S. Olaf and S. M. Daw. the Fourth International Conference of Science & Development, Gaza (2011) (Abstract).
- 7. P. H. Regan, C.W. Beausang, N.V. Zamfir, R. F. Casten, Jing-yeZhang, A. D. Yamamoto, M. A. Caprio, G. Gurdal, A. A. Hecht, C. Hutter, R. Krucken, S. D. Langdown, D. A. Meyer, and J. J. Ressler. Phys. Rev. Lett. 90, pp. 152502, (2003).
- 8. A. Arima and F. Iachello, Phys. Rev. Let., 40, pp.385-391, (1978).
- 9. NSDD Workshop, Triste, (2005).