Please use this identifier to cite or link to this item: http://148.72.244.84/xmlui/handle/xmlui/10726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHaythem Ghani Ahmed-
dc.date.accessioned2023-12-06T07:54:27Z-
dc.date.available2023-12-06T07:54:27Z-
dc.date.issued2012-
dc.identifier.issn2222-8373-
dc.identifier.urihttp://148.72.244.84:8080/xmlui/handle/xmlui/10726-
dc.description.abstractThere are many applications for elliptic curves in cryptography.Cantor's algorithm relies on the Mumford representation of the points in jacobians. This compact representation of points in jacobians and Cantor's algorithm make non-singular hyperelliptic curves suitable for many applications in cryptography. This paper show the extension of cantor's representation for singular hyperelliptic curves.en_US
dc.description.sponsorshiphttps://djps.uodiyala.edu.iq/en_US
dc.language.isoenen_US
dc.subjectHyperelliptic curves, Jacobian, cantor's algorithm, Mumford representationen_US
dc.titleExtended Cantor's Algorithm for Non-Singular Hyperelliptic curves to Singular Hyperelliptic curvesen_US
dc.typeArticleen_US
Appears in Collections:مجلة ديالى للعلوم الاكاديمية / Academic Science Journal (Acad. Sci. J.)

Files in This Item:
File Description SizeFormat 
m10.pdf392.77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.