Please use this identifier to cite or link to this item: http://148.72.244.84/xmlui/handle/xmlui/15821
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2025-02-11T09:02:44Z-
dc.date.available2025-02-11T09:02:44Z-
dc.date.issued2024-04-01-
dc.identifier.issn2958-4612-
dc.identifier.urihttp://148.72.244.84/xmlui/handle/xmlui/15821-
dc.description.abstractIn the setting of a single machine, this study suggests approximation localsearch strategies to identify approximate solutions to the multi-objective sequencing problem, where the problem is the total of the four objectives: total completion time ∑Cjj= 1,....,n, total lateness ∑Lj, maximum lateness Lmaxand maximum earliness Emax.Descent Method (DM), Simulated Annealing (SA), and genetic algorithm (GA) are three approximate local search techniques that are computer-implemented Matlab programs. On the basisof the outcomes of computing tests, conclusions are modeled on the effectiveness of the local search techniquesen_US
dc.language.isoenen_US
dc.publisherUniversity of Diyalaen_US
dc.subjectLocal search, multi-objective, sequencing, genetic algorithm.en_US
dc.titleApproximate Local Search Methods for Multi-objective Sequencing Problemen_US
dc.typeArticleen_US
Appears in Collections:مجلة ديالى للعلوم الاكاديمية / Academic Science Journal (Acad. Sci. J.)

Files in This Item:
File Description SizeFormat 
10-718+ (1).pdf691.2 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.