Please use this identifier to cite or link to this item: http://148.72.244.84/xmlui/handle/xmlui/15841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaydaa Khaleel Mostafa-
dc.contributor.authorDuaa Jasim-
dc.contributor.authorAthraa Falih Hasan-
dc.contributor.authorIbtihal Thabit Jameel-
dc.contributor.authorFatima M. ABOUD-
dc.date.accessioned2025-02-11T09:52:19Z-
dc.date.available2025-02-11T09:52:19Z-
dc.date.issued2024-01-01-
dc.identifier.issn2958-4612-
dc.identifier.urihttp://148.72.244.84/xmlui/handle/xmlui/15841-
dc.description.abstractIn this article a fourth order differential boundary value problem is solved using a mesh less collocation method. The efficiency of the proposed methods is illustrated by solving problems with some examples of a polynomial and Non polynomial exact solutions and by using Conjugate gradient method and Conjugate gradient Least square algorithms and the numerical stability is verified by using a noise for the input boundary data.en_US
dc.language.isoenen_US
dc.publisheruniversity of diyalaen_US
dc.subjectBi-Laplacian differential equation, Inverse Cauchy problem, mesh less method. Conjugate Gradient Method, Conjugate Gradient Least Square.en_US
dc.titleSolving Bi-harmonic Cauchy problem using a meshless collocation methoden_US
dc.typeArticleen_US
Appears in Collections:مجلة ديالى للعلوم الاكاديمية / Academic Science Journal (Acad. Sci. J.)

Files in This Item:
File Description SizeFormat 
25-694_modified[1].pdf1.14 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.