Please use this identifier to cite or link to this item:
http://148.72.244.84/xmlui/handle/xmlui/15841Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Baydaa Khaleel Mostafa | - |
| dc.contributor.author | Duaa Jasim | - |
| dc.contributor.author | Athraa Falih Hasan | - |
| dc.contributor.author | Ibtihal Thabit Jameel | - |
| dc.contributor.author | Fatima M. ABOUD | - |
| dc.date.accessioned | 2025-02-11T09:52:19Z | - |
| dc.date.available | 2025-02-11T09:52:19Z | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.issn | 2958-4612 | - |
| dc.identifier.uri | http://148.72.244.84/xmlui/handle/xmlui/15841 | - |
| dc.description.abstract | In this article a fourth order differential boundary value problem is solved using a mesh less collocation method. The efficiency of the proposed methods is illustrated by solving problems with some examples of a polynomial and Non polynomial exact solutions and by using Conjugate gradient method and Conjugate gradient Least square algorithms and the numerical stability is verified by using a noise for the input boundary data. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | university of diyala | en_US |
| dc.subject | Bi-Laplacian differential equation, Inverse Cauchy problem, mesh less method. Conjugate Gradient Method, Conjugate Gradient Least Square. | en_US |
| dc.title | Solving Bi-harmonic Cauchy problem using a meshless collocation method | en_US |
| dc.type | Article | en_US |
| Appears in Collections: | مجلة ديالى للعلوم الاكاديمية / Academic Science Journal (Acad. Sci. J.) | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 25-694_modified[1].pdf | 1.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.