Please use this identifier to cite or link to this item: http://148.72.244.84/xmlui/handle/xmlui/8688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDhahir A. Abdullah-
dc.date.accessioned2023-11-09T06:52:44Z-
dc.date.available2023-11-09T06:52:44Z-
dc.date.issued2013-01-01-
dc.identifier.issn2222-8373-
dc.identifier.urihttp://148.72.244.84:8080/xmlui/handle/xmlui/8688-
dc.description.abstractSwarm intelligence is the study of collective behavior in decentralized and self-organized systems. Particle swarm optimization algorithm (PSOA) models the exploration of a problem space by a population of agents or particles. In this paper, PSOA is used to reduce the makespan and idle time of jop-shop scheduling problem. The proposed algorithm update the speed (Vik ) and position (Xi k ) depend on local (Pbest ) and global (Gbest ) values, in order to find best solutions. The critical path is found by drawing Gantt chart.en_US
dc.description.sponsorshiphttps://djps.uodiyala.edu.iq/pages?id=65en_US
dc.language.isoenen_US
dc.publisheruniversity of Diyalaen_US
dc.subjectmakespan, PSO-practice swarm algorithm, job scheduling problem.en_US
dc.titleObjective Flow-Shop Scheduling Using PSO Algorithmen_US
dc.typeArticleen_US
Appears in Collections:مجلة ديالى للعلوم الاكاديمية / Academic Science Journal (Acad. Sci. J.)

Files in This Item:
File Description SizeFormat 
161-175 E.pdf452.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.